## Weight strings in nonstandard representations of Kac-Moody algebras

HTML articles powered by AMS MathViewer

- by Meighan I. Dillon
- Trans. Amer. Math. Soc.
**320**(1990), 161-169 - DOI: https://doi.org/10.1090/S0002-9947-1990-0964898-9
- PDF | Request permission

## Abstract:

We consider the weights which occur in arbitrary irreducible highest weight representations of Kac-Moody algebras and determine conditions under which certain weights may or may not occur.## References

- I. B. Frenkel,
*Representations of Kac-Moody algebras and dual resonance models*, Applications of group theory in physics and mathematical physics (Chicago, 1982) Lectures in Appl. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1985, pp. 325–353. MR**789298** - I. B. Frenkel,
*Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory*, J. Functional Analysis**44**(1981), no. 3, 259–327. MR**643037**, DOI 10.1016/0022-1236(81)90012-4 - I. B. Frenkel and V. G. Kac,
*Basic representations of affine Lie algebras and dual resonance models*, Invent. Math.**62**(1980/81), no. 1, 23–66. MR**595581**, DOI 10.1007/BF01391662 - James E. Humphreys,
*Introduction to Lie algebras and representation theory*, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR**0323842** - Nathan Jacobson,
*Lie algebras*, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR**0143793** - Victor G. Kac,
*Infinite-dimensional Lie algebras*, Progress in Mathematics, vol. 44, Birkhäuser Boston, Inc., Boston, MA, 1983. An introduction. MR**739850**, DOI 10.1007/978-1-4757-1382-4
—, - V. G. Kac, D. A. Kazhdan, J. Lepowsky, and R. L. Wilson,
*Realization of the basic representations of the Euclidean Lie algebras*, Adv. in Math.**42**(1981), no. 1, 83–112. MR**633784**, DOI 10.1016/0001-8708(81)90053-0 - Victor G. Kac and Dale H. Peterson,
*Infinite-dimensional Lie algebras, theta functions and modular forms*, Adv. in Math.**53**(1984), no. 2, 125–264. MR**750341**, DOI 10.1016/0001-8708(84)90032-X - J. Lepowsky,
*Some constructions of the affine Lie algebra $A^{(1)}_1$*, Applications of group theory in physics and mathematical physics (Chicago, 1982) Lectures in Appl. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1985, pp. 375–397. MR**789300**
—, - David Mitzman,
*Integral bases for affine Lie algebras and their universal enveloping algebras*, Contemporary Mathematics, vol. 40, American Mathematical Society, Providence, RI, 1985. MR**786830**, DOI 10.1090/conm/040 - Robert V. Moody,
*Euclidean Lie algebras*, Canadian J. Math.**21**(1969), 1432–1454. MR**255627**, DOI 10.4153/CJM-1969-158-2 - R. V. Moody,
*Lie algebras associated with generalized Cartan matrices*, Bull. Amer. Math. Soc.**73**(1967), 217–221. MR**207783**, DOI 10.1090/S0002-9904-1967-11688-4 - Robert V. Moody,
*A new class of Lie algebras*, J. Algebra**10**(1968), 211–230. MR**229687**, DOI 10.1016/0021-8693(68)90096-3 - Robert Steinberg,
*Lectures on Chevalley groups*, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR**0466335**

*Simple irreducible graded Lie algebras of finite growth*, Math. USSR-Izv.

**2**(1968), 1271-1311.

*Lectures on Kac-Moody algebras*, Université Paris VI, spring 1978.

## Bibliographic Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**320**(1990), 161-169 - MSC: Primary 17B67; Secondary 17B05, 17B10, 17B20
- DOI: https://doi.org/10.1090/S0002-9947-1990-0964898-9
- MathSciNet review: 964898