$L^ p$ inequalities for entire functions of exponential type
HTML articles powered by AMS MathViewer
- by Qazi I. Rahman and G. Schmeisser
- Trans. Amer. Math. Soc. 320 (1990), 91-103
- DOI: https://doi.org/10.1090/S0002-9947-1990-0974526-4
- PDF | Request permission
Abstract:
Let $f$ be an entire function of exponential type $\tau$ belonging to ${L^p}$ on the real line. It has been known since a long time that \[ \int _{ - \infty }^\infty {{{\left | {fâ(x)} \right |}^p}dx \leq {\tau ^p}\int _{ - \infty }^\infty {{{\left | {f(x)} \right |}^p}dx\quad {\text {if}}\;p \geq 1.} } \] We prove that the same inequality holds also for $0 < p < 1$. Various other estimates of the same kind have been obtained.References
- N. I. Achieser, Theorem of approximation, Ungar, New York, 1956.
- V. V. Arestov, Integral inequalities for algebraic polynomials with a restriction on their zeros, Anal. Math. 17 (1991), no. 1, 11â20 (English, with Russian summary). MR 1132526, DOI 10.1007/BF02055084
- Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
- R. P. Boas Jr., Inequalities for functions of exponential type, Math. Scand. 4 (1956), 29â32. MR 85343, DOI 10.7146/math.scand.a-10453
- R. P. Boas Jr., Inequalities for asymmetric entire functions, Illinois J. Math. 1 (1957), 94â97. MR 84577
- R. P. Boas Jr. and Q. I. Rahman, $L^{p}$ inequalities for polynomials and entire functions, Arch. Rational Mech. Anal. 11 (1962), 34â39. MR 158994, DOI 10.1007/BF00253927
- Richard Duffin and A. C. Schaeffer, Some properties of functions of exponential type, Bull. Amer. Math. Soc. 44 (1938), no. 4, 236â240. MR 1563717, DOI 10.1090/S0002-9904-1938-06725-0 T. G. GenÄev, Inequalities for asymmetric entire functions of exponential type, Soviet Math. Dokl. 19 (1978), 981-985. G. H. Hardy, The mean value of the modulus of an analytic function, Proc. London Math. Soc. (2) 14 (1915), 269-277. W. K. Hayman and P. B. Kennedy, Subharmonic functions, Vol. 1, Academic Press, 1976.
- Lars Hörmander, Some inequalities for functions of exponential type, Math. Scand. 3 (1955), 21â27. MR 72210, DOI 10.7146/math.scand.a-10421
- Q. I. Rahman, Functions of exponential type, Trans. Amer. Math. Soc. 135 (1969), 295â309. MR 232938, DOI 10.1090/S0002-9947-1969-0232938-X
- Q. I. Rahman and G. Schmeisser, Extension of a theorem of Laguerre to entire functions of exponential type, J. Math. Anal. Appl. 122 (1987), no. 2, 463â468. MR 877829, DOI 10.1016/0022-247X(87)90276-9
- G. Szegö, Bemerkungen zu einem Satz von J. H. Grace ĂŒber die Wurzeln algebraischer Gleichungen, Math. Z. 13 (1922), no. 1, 28â55 (German). MR 1544526, DOI 10.1007/BF01485280
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 320 (1990), 91-103
- MSC: Primary 30D15
- DOI: https://doi.org/10.1090/S0002-9947-1990-0974526-4
- MathSciNet review: 974526