## The initial-Neumann problem for the heat equation in Lipschitz cylinders

HTML articles powered by AMS MathViewer

- by Russell M. Brown
- Trans. Amer. Math. Soc.
**320**(1990), 1-52 - DOI: https://doi.org/10.1090/S0002-9947-1990-1000330-7
- PDF | Request permission

## Abstract:

We prove existence and uniqueness for solutions of the initial-Neumann problem for the heat equation in Lipschitz cylinders when the lateral data is in ${L^p}$, $1 < p < 2+\varepsilon$, with respect to surface measure. For convenience, we assume that the initial data is zero. Estimates are given for the parabolic maximal function of the spatial gradient. An endpoint result is established when the data lies in the atomic Hardy space ${H^1}$. Similar results are obtained for the initial-Dirichlet problem when the data lies in a space of potentials having one spatial derivative and half of a time derivative in ${L^p}$, $1 < p < 2+\varepsilon$, with a corresponding Hardy space result when $p = 1$. Using these results, we show that our solutions may be represented as single-layer heat potentials. By duality, it follows that solutions of the initial-Dirichlet problem with data in ${L^q}$, $2 - \varepsilon ’ < q < \infty$ and*BMO*may be represented as double-layer heat potentials.

## References

- D. G. Aronson,
*Bounds for the fundamental solution of a parabolic equation*, Bull. Amer. Math. Soc.**73**(1967), 890–896. MR**217444**, DOI 10.1090/S0002-9904-1967-11830-5 - D. G. Aronson,
*Non-negative solutions of linear parabolic equations*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)**22**(1968), 607–694. MR**435594** - Russell M. Brown,
*The method of layer potentials for the heat equation in Lipschitz cylinders*, Amer. J. Math.**111**(1989), no. 2, 339–379. MR**987761**, DOI 10.2307/2374513 - Russell M. Brown,
*Area integral estimates for caloric functions*, Trans. Amer. Math. Soc.**315**(1989), no. 2, 565–589. MR**994163**, DOI 10.1090/S0002-9947-1989-0994163-7 - A.-P. Calderón,
*Cauchy integrals on Lipschitz curves and related operators*, Proc. Nat. Acad. Sci. U.S.A.**74**(1977), no. 4, 1324–1327. MR**466568**, DOI 10.1073/pnas.74.4.1324
—, - R. R. Coifman, A. McIntosh, and Y. Meyer,
*L’intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes lipschitziennes*, Ann. of Math. (2)**116**(1982), no. 2, 361–387 (French). MR**672839**, DOI 10.2307/2007065 - Ronald R. Coifman and Guido Weiss,
*Extensions of Hardy spaces and their use in analysis*, Bull. Amer. Math. Soc.**83**(1977), no. 4, 569–645. MR**447954**, DOI 10.1090/S0002-9904-1977-14325-5 - Björn E. J. Dahlberg and Carlos E. Kenig,
*Hardy spaces and the Neumann problem in $L^p$ for Laplace’s equation in Lipschitz domains*, Ann. of Math. (2)**125**(1987), no. 3, 437–465. MR**890159**, DOI 10.2307/1971407 - E. B. Fabes and M. Jodeit Jr.,
*$L^{p}$ boundary value problems for parabolic equations*, Bull. Amer. Math. Soc.**74**(1968), 1098–1102. MR**233081**, DOI 10.1090/S0002-9904-1968-12061-0 - E. B. Fabes and N. M. Rivière,
*Dirichlet and Neumann problems for the heat equation in $C^{1}$-cylinders*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 179–196. MR**545307** - Eugene Fabes and Sandro Salsa,
*Estimates of caloric measure and the initial-Dirichlet problem for the heat equation in Lipschitz cylinders*, Trans. Amer. Math. Soc.**279**(1983), no. 2, 635–650. MR**709573**, DOI 10.1090/S0002-9947-1983-0709573-7 - E. B. Fabes and D. W. Stroock,
*The $L^p$-integrability of Green’s functions and fundamental solutions for elliptic and parabolic equations*, Duke Math. J.**51**(1984), no. 4, 997–1016. MR**771392**, DOI 10.1215/S0012-7094-84-05145-7 - John B. Garnett and Peter W. Jones,
*BMO from dyadic BMO*, Pacific J. Math.**99**(1982), no. 2, 351–371. MR**658065** - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190**, DOI 10.1007/978-3-642-61798-0 - Anna Grimaldi Piro, Francesco Ragnedda, and Umberto Neri,
*Invertibility of some heat potentials in BMO norms*, Rend. Sem. Mat. Univ. Padova**75**(1986), 77–90. MR**847659** - John T. Kemper,
*Temperatures in several variables: Kernel functions, representations, and parabolic boundary values*, Trans. Amer. Math. Soc.**167**(1972), 243–262. MR**294903**, DOI 10.1090/S0002-9947-1972-0294903-6 - Robert V. Kohn,
*New integral estimates for deformations in terms of their nonlinear strains*, Arch. Rational Mech. Anal.**78**(1982), no. 2, 131–172. MR**648942**, DOI 10.1007/BF00250837
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralceva, - Jürgen Moser,
*A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math.**17**(1964), 101–134. MR**159139**, DOI 10.1002/cpa.3160170106 - Elias M. Stein,
*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095** - N. Th. Varopoulos,
*BMO functions and the $\overline \partial$-equation*, Pacific J. Math.**71**(1977), no. 1, 221–273. MR**508035** - Gregory Verchota,
*Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains*, J. Funct. Anal.**59**(1984), no. 3, 572–611. MR**769382**, DOI 10.1016/0022-1236(84)90066-1

*Boundary value problems in Lipschitzian domains*, Recent Progress in Fourier Analysis, Elsevier Science Publishers, 1985, pp. 33-48.

*Linear and quasilinear equations of parabolic type*, Transl. Math. Mono., vol. 23, Amer. Math. Soc., Providence, R.I., 1968.

## Bibliographic Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**320**(1990), 1-52 - MSC: Primary 35K05; Secondary 31B35, 35C15, 42B30, 46E35
- DOI: https://doi.org/10.1090/S0002-9947-1990-1000330-7
- MathSciNet review: 1000330