The nonlinear geometry of linear programming. III. Projective Legendre transform coordinates and Hilbert geometry
Author:
J. C. Lagarias
Journal:
Trans. Amer. Math. Soc. 320 (1990), 193-225
MSC:
Primary 90C05
DOI:
https://doi.org/10.1090/S0002-9947-1990-1058199-0
MathSciNet review:
1058199
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper studies projective scaling trajectories, which are the trajectories obtained by following the infinitesimal version of Karmarkar's linear programming algorithm. A nonlinear change of variables, projective Legendre transform coordinates, is introduced to study these trajectories. The projective Legendre transform mapping has a coordinate-free geometric interpretation in terms of the notion of "centering by a projective transformation." Let be a set of linear programming constraints
on
such that its polytope of feasible solutions
is bounded and contains
in its interior. The projective Legendre transform mapping
is given by












- [A] Kurt M. Anstreicher, Linear programming and the Newton barrier flow, Math. Programming 41 (1988), no. 3, (Ser. A), 367–373. MR 955212, https://doi.org/10.1007/BF01580774
- [BL1] D. A. Bayer and J. C. Lagarias, The nonlinear geometry of linear programming. I. Affine and projective scaling trajectories, Trans. Amer. Math. Soc. 314 (1989), no. 2, 499–526. MR 1005525, https://doi.org/10.1090/S0002-9947-1989-1005525-6
- [BL2] D. A. Bayer and J. C. Lagarias, The nonlinear geometry of linear programming. I. Affine and projective scaling trajectories, Trans. Amer. Math. Soc. 314 (1989), no. 2, 499–526. MR 1005525, https://doi.org/10.1090/S0002-9947-1989-1005525-6
- [BL] -, Karmarkar's linear programming algorithm and Newton's method, Math. Programming (to appear).
- [Bi] Garrett Birkhoff, Extensions of Jentzsch’s theorem, Trans. Amer. Math. Soc. 85 (1957), 219–227. MR 87058, https://doi.org/10.1090/S0002-9947-1957-0087058-6
- [Bu1] Herbert Busemann, The geometry of geodesics, Academic Press Inc., New York, N. Y., 1955. MR 0075623
- [Bu2] -, Spaces with distinguished shortest joins, Mathematical Developments Arising from Hilbert Problems, Proc. Sympos. Pure Math., vol. 28, Amer. Math. Soc., Providence, R.I., 1976, pp. 131-142.
- [BP] H. Busemann and B. B. Phadke, A general version of Beltrami’s theorem in the large, Pacific J. Math. 115 (1984), no. 2, 299–315. MR 765189
- [Bush] P. J. Bushell, On the projective contraction ratio for positive linear mappings, J. London Math. Soc. (2) 6 (1973), 256–258. MR 331003, https://doi.org/10.1112/jlms/s2-6.2.256
- [Bush2] P. J. Bushell, Hilbert’s metric and positive contraction mappings in a Banach space, Arch. Rational Mech. Anal. 52 (1973), 330–338. MR 336473, https://doi.org/10.1007/BF00247467
- [Fe1] W. Fenchel, A remark on convex sets and polarity, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (1952), no. Tome Supplémentaire, 82–89. MR 0051535
- [Fe2] -, Convex cones, sets, and functions, Mimeographed Lecture Notes, Princeton Univ., 1953.
- [H1] D. Hilbert, Ueber die gerade Linie als Kürzeste Verbindung zwier punkte, Math. Ann. 46 (1895), 91-96 (Appendix I of [H3]).
- [H2] David Hilbert, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), no. 10, 437–479. MR 1557926, https://doi.org/10.1090/S0002-9904-1902-00923-3
- [H3] David Hilbert, Foundations of geometry, Second edition. Translated from the tenth German edition by Leo Unger, Open Court, LaSalle, Ill., 1971. MR 0275262
- [K] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984), no. 4, 373–395. MR 779900, https://doi.org/10.1007/BF02579150
- [K1] Victor Klee, Adjoints of projective transformations and face-figures of convex polytopes, Math. Programming Stud. 8 (1978), 208–216. Polyhedral combinatorics. MR 510377, https://doi.org/10.1007/bfb0121203
- [Ko] Shoshichi Kobayashi, Invariant distances for projective structures, Symposia Mathematica, Vol. XXVI (Rome, 1980) Academic Press, London-New York, 1982, pp. 153–161. MR 663030
- [KP] Elon Kohlberg and John W. Pratt, The contraction mapping approach to the Perron-Frobenius theory: why Hilbert’s metric?, Math. Oper. Res. 7 (1982), no. 2, 198–210. MR 665557, https://doi.org/10.1287/moor.7.2.198
- [MS] Nimrod Megiddo and Michael Shub, Boundary behavior of interior point algorithms in linear programming, Math. Oper. Res. 14 (1989), no. 1, 97–146. MR 984561, https://doi.org/10.1287/moor.14.1.97
- [Sh] Michael Shub, On the asymptotic behavior of the projective rescaling algorithm for linear programming, J. Complexity 3 (1987), no. 3, 258–269. MR 919676, https://doi.org/10.1016/0885-064X(87)90015-X
- [S1] F. W. Sinden, A geometric representation for pairs of dual quadratic or linear programs, J. Math. Anal. Appl. 5 (1962), 378–402. MR 145997, https://doi.org/10.1016/0022-247X(62)90014-8
- [S2] Frank W. Sinden, Duality in convex programming and in projective space, J. Soc. Indust. Appl. Math. 11 (1963), 535–552. MR 158764
- [So1] Gy. Sonnevend, An “analytical centre” for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming, System modelling and optimization (Budapest, 1985) Lect. Notes Control Inf. Sci., vol. 84, Springer, Berlin, 1986, pp. 866–875. MR 903521, https://doi.org/10.1007/BFb0043914
- [So2] -, A new method of solving a set of linear (convex) inequalities and its application for identification and optimization, Proc. Sympos. Dynamic Modelling, IFAC-IFORS, Budapest, 1986.
- [St] E. Steinitz, Bedingt konvergente Reihen und konvexe Systeme. I, II, III, J. Reine Angew Math. 143 (1913), 128-195; 144 (1914), 1-40: 146 (1916), 1-52.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 90C05
Retrieve articles in all journals with MSC: 90C05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1990-1058199-0
Article copyright:
© Copyright 1990
American Mathematical Society