On a theorem of Stein
HTML articles powered by AMS MathViewer
- by Steven G. Krantz
- Trans. Amer. Math. Soc. 320 (1990), 625-642
- DOI: https://doi.org/10.1090/S0002-9947-1990-0964899-0
- PDF | Request permission
Abstract:
In this paper the Kobayashi metric on a domain in ${{\mathbf {C}}^n}$ is used to define a new function space. Elements of this space belong to a nonisotropic Lipschitz class. It is proved that if $f$ is holomorphic on the domain and in the classical Lipschitz space ${\Lambda _\alpha }$ then in fact $f$ is in the new function space. The result contains the original result of Stein on this subject and provides the optimal result adapted to any domain. In particular, it recovers the Hartogs extension phenomenon in the category of Lipschitz spaces.References
- David W. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), no. 3, 429–466. MR 978601, DOI 10.1007/BF01215657 Der Chen E. Chang and S. G. Krantz, Holomorphic Lipschitz functions and applications to the $\overline \partial$-problem, preprint.
- Ian Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in $C^{n}$ with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219–240. MR 372252, DOI 10.1090/S0002-9947-1975-0372252-8
- Robert E. Greene and Steven G. Krantz, Stability of the Carathéodory and Kobayashi metrics and applications to biholomorphic mappings, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 77–93. MR 740874, DOI 10.1090/pspum/041/740874
- Hans Grauert and Helmut Reckziegel, Hermitesche Metriken und normale Familien holomorpher Abbildungen, Math. Z. 89 (1965), 108–125 (German). MR 194617, DOI 10.1007/BF01111588
- Steven G. Krantz, Fatou theorems on domains in $\textbf {C}^n$, Bull. Amer. Math. Soc. (N.S.) 16 (1987), no. 1, 93–96. MR 866022, DOI 10.1090/S0273-0979-1987-15469-3 —, Invariant metrics and boundary behavior of holomorphic functions, in preparation.
- Steven G. Krantz, Function theory of several complex variables, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. MR 635928
- Steven G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math. 1 (1983), no. 3, 193–260. MR 782608
- Steven G. Krantz, Smoothness of harmonic and holomorphic functions, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 63–67. MR 545292
- Steven G. Krantz, Boundary values and estimates for holomorphic functions of several complex variables, Duke Math. J. 47 (1980), no. 1, 81–98. MR 563368
- Steven G. Krantz, The boundary behavior of the Kobayashi metric, Rocky Mountain J. Math. 22 (1992), no. 1, 227–233. MR 1159955, DOI 10.1216/rmjm/1181072807 S. G. Krantz and Daowei Ma, Bloch functions on strongly pseudoconvex domains, Indiana Math. J. (in press).
- Hans-Jörg Reiffen, Die differentialgeometrischen Eigenschaften der invarianten Distanzfunktion von Carathéodory, Schr. Math. Inst. Univ. Münster 26 (1963), iii+66 (German). MR 158093
- H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Lecture Notes in Math., Vol. 185, Springer, Berlin, 1971, pp. 125–137. MR 0304694
- E. M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 79 (1973), 440–445. MR 315302, DOI 10.1090/S0002-9904-1973-13205-7
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 320 (1990), 625-642
- MSC: Primary 32H15; Secondary 32A40
- DOI: https://doi.org/10.1090/S0002-9947-1990-0964899-0
- MathSciNet review: 964899