Semialgebraic expansions of $\textbf {C}$
HTML articles powered by AMS MathViewer
- by David Marker PDF
- Trans. Amer. Math. Soc. 320 (1990), 581-592 Request permission
Abstract:
We prove no nontrivial expansion of the field of complex numbers can be obtained from a reduct of the field of real numbers.References
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 12, Springer-Verlag, Berlin, 1987 (French). MR 949442
- Michel Coste and Marie-Françoise Roy, La topologie du spectre réel, Ordered fields and real algebraic geometry (San Francisco, Calif., 1981), Contemp. Math., vol. 8, Amer. Math. Soc., Providence, R.I., 1982, pp. 27–59 (French). MR 653174 J. Denef and L. van den Dries, Real and $p$-adic subanalytic sets, Ann. of Math. (to appear)
- M. A. Dickmann, Applications of model theory to real algebraic geometry. A survey, Methods in mathematical logic (Caracas, 1983) Lecture Notes in Math., vol. 1130, Springer, Berlin, 1985, pp. 76–150. MR 799038, DOI 10.1007/BFb0075308
- Lou van den Dries, Remarks on Tarski’s problem concerning $(\textbf {R},\,+,\,\cdot ,\,\textrm {exp})$, Logic colloquium ’82 (Florence, 1982) Stud. Logic Found. Math., vol. 112, North-Holland, Amsterdam, 1984, pp. 97–121. MR 762106, DOI 10.1016/S0049-237X(08)71811-1 —, Dimension of definable sets, algebraic boundedness and Henselian fields, preprint.
- Anand Pillay and Charles Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697, DOI 10.1090/S0002-9947-1986-0833697-X
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Anand Pillay and Charles Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697, DOI 10.1090/S0002-9947-1986-0833697-X
- Bruno Poizat, Groupes stables, Nur al-Mantiq wal-Maʾrifah [Light of Logic and Knowledge], vol. 2, Bruno Poizat, Lyon, 1987 (French). Une tentative de conciliation entre la géométrie algébrique et la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical logic]. MR 902156
- A. Seidenberg, The hyperplane sections of normal varieties, Trans. Amer. Math. Soc. 69 (1950), 357–386. MR 37548, DOI 10.1090/S0002-9947-1950-0037548-0
Additional Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 320 (1990), 581-592
- MSC: Primary 03C60; Secondary 03C45, 14G99
- DOI: https://doi.org/10.1090/S0002-9947-1990-0964900-4
- MathSciNet review: 964900