Boundedness versus periodicity over commutative local rings
HTML articles powered by AMS MathViewer
- by Vesselin N. Gasharov and Irena V. Peeva
- Trans. Amer. Math. Soc. 320 (1990), 569-580
- DOI: https://doi.org/10.1090/S0002-9947-1990-0967311-0
- PDF | Request permission
Abstract:
Over commutative graded local artinian rings, examples are constructed of periodic modules of arbitrary minimal period and modules with bounded Betti numbers, which are not eventually periodic. They provide counterexamples to a conjecture of D. Eisenbud, that every module with bounded Betti numbers over a commutative local ring is eventually periodic of period $2$. It is proved however, that the conjecture holds over rings of small length.References
- L. L. Avramov, Modules of finite virtual projective dimension, Invent. Math. 96 (1989), no. 1, 71–101. MR 981738, DOI 10.1007/BF01393971
- Luchezar L. Avramov, Homological asymptotics of modules over local rings, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 33–62. MR 1015512, DOI 10.1007/978-1-4612-3660-3_{3}
- Luchezar L. Avramov, Vesselin N. Gasharov, and Irena V. Peeva, A periodic module of infinite virtual projective dimension, J. Pure Appl. Algebra 62 (1989), no. 1, 1–5. MR 1026870, DOI 10.1016/0022-4049(89)90016-9
- Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1983 (French). Algèbre commutative. Chapitre 8. Dimension. Chapitre 9. Anneaux locaux noethériens complets. [Commutative algebra. Chapter 8. Dimension. Chapter 9. Complete Noetherian local rings]. MR 722608
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778, DOI 10.1090/S0002-9947-1980-0570778-7
- Carl Jacobsson and Viggo Stoltenberg-Hansen, Poincaré-Betti series are primitive recursive, J. London Math. Soc. (2) 31 (1985), no. 1, 1–9. MR 810556, DOI 10.1112/jlms/s2-31.1.1
- Jack Lescot, Asymptotic properties of Betti numbers of modules over certain rings, J. Pure Appl. Algebra 38 (1985), no. 2-3, 287–298. MR 814184, DOI 10.1016/0022-4049(85)90016-7
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 320 (1990), 569-580
- MSC: Primary 13D05; Secondary 13H99
- DOI: https://doi.org/10.1090/S0002-9947-1990-0967311-0
- MathSciNet review: 967311