The Dirichlet problem for radially homogeneous elliptic operators
HTML articles powered by AMS MathViewer
- by Richard F. Bass
- Trans. Amer. Math. Soc. 320 (1990), 593-614
- DOI: https://doi.org/10.1090/S0002-9947-1990-0968415-9
- PDF | Request permission
Abstract:
The Dirichlet problem in the unit ball is considered for the strictly elliptic operator $L = \sum {{a_{ij}}{D_{ij}}}$, where the ${a_{ij}}$, are smooth away from the origin and radially homogeneous: ${a_{ij}}(rx) = {a_{ij}}(x),\;r > 0,\;x \ne 0$. Existence and uniqueness are proved for solutions in a certain space of functions. Necessary and sufficient conditions are given for an extended maximum principle to hold.References
- R. F. Bass and É. Pardoux, Uniqueness for diffusions with piecewise constant coefficients, Probab. Theory Related Fields 76 (1987), no. 4, 557–572. MR 917679, DOI 10.1007/BF00960074
- J. R. Baxter and G. A. Brosamler, Energy and the law of the iterated logarithm, Math. Scand. 38 (1976), no. 1, 115–136. MR 426178, DOI 10.7146/math.scand.a-11622
- R. N. Bhattacharya, On the functional central limit theorem and the law of the iterated logarithm for Markov processes, Z. Wahrsch. Verw. Gebiete 60 (1982), no. 2, 185–201. MR 663900, DOI 10.1007/BF00531822
- D. Gilbarg and James Serrin, On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math. 4 (1955/56), 309–340. MR 81416, DOI 10.1007/BF02787726
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- M. G. Kreĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Translation 1950 (1950), no. 26, 128. MR 0038008
- N. V. Krylov, A certain estimate from the theory of stochastic integrals, Teor. Verojatnost. i Primenen. 16 (1971), 446–457 (Russian, with English summary). MR 0298792 N. V. Krylov and M. V. Safonov, An estimate of the probability that a diffusion process hits a set of positive measure, Soviet Math. Dokl. 20 (1979), 253-255. —, A certain property of solutions of parabolic equation with measurable coefficients, Math. USSR-Izv. 16 (1981), 151-235.
- L. Lamberti and P. Manselli, Existence-uniqueness theorems and counterexamples for an axially symmetric elliptic operator, Boll. Un. Mat. Ital. B (6) 2 (1983), no. 2, 431–443 (English, with Italian summary). MR 716741
- Carlo Pucci, Limitazioni per soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl. (4) 74 (1966), 15–30 (Italian, with English summary). MR 214905, DOI 10.1007/BF02416445
- M. V. Safonov, Unimprovability of estimates of Hölder constants for solutions of linear elliptic equations with measurable coefficients, Mat. Sb. (N.S.) 132(174) (1987), no. 2, 275–288 (Russian); English transl., Math. USSR-Sb. 60 (1988), no. 1, 269–281. MR 882838, DOI 10.1070/SM1988v060n01ABEH003167
- Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498
- R. J. Williams, Brownian motion with polar drift, Trans. Amer. Math. Soc. 292 (1985), no. 1, 225–246. MR 805961, DOI 10.1090/S0002-9947-1985-0805961-0 L. Caffarelli, private communication.
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 320 (1990), 593-614
- MSC: Primary 35J25; Secondary 35B50, 60J60
- DOI: https://doi.org/10.1090/S0002-9947-1990-0968415-9
- MathSciNet review: 968415