Comparison of commuting one-parameter groups of isometries
HTML articles powered by AMS MathViewer
- by Ola Bratteli, Hideki Kurose and Derek W. Robinson
- Trans. Amer. Math. Soc. 320 (1990), 677-694
- DOI: https://doi.org/10.1090/S0002-9947-1990-0968886-8
- PDF | Request permission
Abstract:
Let $\alpha ,\;\beta$ be two commuting strongly continuous one-parameter groups of isometries on a Banach space $\mathcal {A}$ with generators ${\delta _\alpha }$ and ${\delta _\beta }$, and analytic elements $\mathcal {A}_\omega ^\alpha ,\;\mathcal {A}_\omega ^\beta$, respectively. Then it is easy to show that if ${\delta _\alpha }$ is relatively bounded by ${\delta _\beta }$, then $\mathcal {A}_\omega ^\beta \subseteq \mathcal {A}_\omega ^\alpha$, and in this paper we establish the inverse implication for unitary one-parameter groups on Hilbert spaces and for one-parameter groups of $^{\ast }$-automorphisms of abelian ${C^{\ast }}$-algebras. It is not known in general whether the inverse implication holds or not, but it does not hold for one-parameter semigroups of contractions.References
- Ola Bratteli, Derivations, dissipations and group actions on $C^*$-algebras, Lecture Notes in Mathematics, vol. 1229, Springer-Verlag, Berlin, 1986. MR 871870, DOI 10.1007/BFb0098817
- Ola Bratteli, Trond Digernes, Frederick Goodman, and Derek W. Robinson, Integration in abelian $C^\ast$-dynamical systems, Publ. Res. Inst. Math. Sci. 21 (1985), no. 5, 1001–1030. MR 817155, DOI 10.2977/prims/1195178793
- Ola Bratteli, George A. Elliott, and Derek W. Robinson, The characterization of differential operators by locality: classical flows, Compositio Math. 58 (1986), no. 3, 279–319. MR 846908
- Ola Bratteli, Frederick M. Goodman, Palle E. T. Jorgensen, and Derek W. Robinson, The heat semigroup and integrability of Lie algebras, J. Funct. Anal. 79 (1988), no. 2, 351–397. MR 953908, DOI 10.1016/0022-1236(88)90018-3
- Ola Bratteli and Derek W. Robinson, Operator algebras and quantum-statistical mechanics. II, Texts and Monographs in Physics, Springer-Verlag, New York-Berlin, 1981. Equilibrium states. Models in quantum-statistical mechanics. MR 611508
- Frederick M. Goodman and Palle E. T. Jorgensen, Lie algebras of unbounded derivations, J. Funct. Anal. 52 (1983), no. 3, 369–384. MR 712587, DOI 10.1016/0022-1236(83)90075-7
- Akitaka Kishimoto, Derivations with a domain condition, Yokohama Math. J. 32 (1984), no. 1-2, 215–223. MR 772917
- Akitaka Kishimoto and Derek W. Robinson, Derivations, dynamical systems, and spectral restrictions, Math. Scand. 56 (1985), no. 1, 83–95. MR 807505, DOI 10.7146/math.scand.a-12089
- Edward Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572–615. MR 107176, DOI 10.2307/1970331
- Donald Ornstein, A non-equality for differential operators in the $L_{1}$ norm, Arch. Rational Mech. Anal. 11 (1962), 40–49. MR 149331, DOI 10.1007/BF00253928
- Derek W. Robinson, The differential and integral structure of representations of Lie groups, J. Operator Theory 19 (1988), no. 1, 95–128. MR 950828
- Derek W. Robinson, Lie groups and Lipschitz spaces, Duke Math. J. 57 (1988), no. 2, 357–395. MR 962512, DOI 10.1215/S0012-7094-88-05717-1
- Kôsaku Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980. MR 617913
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 320 (1990), 677-694
- MSC: Primary 47D03; Secondary 46L40, 46L57
- DOI: https://doi.org/10.1090/S0002-9947-1990-0968886-8
- MathSciNet review: 968886