Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions
Authors:
Miguel A. Ariño and Benjamin Muckenhoupt
Journal:
Trans. Amer. Math. Soc. 320 (1990), 727-735
MSC:
Primary 42B25; Secondary 26D15, 46E30, 47B38
DOI:
https://doi.org/10.1090/S0002-9947-1990-0989570-0
MathSciNet review:
989570
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A characterization is given of a class of classical Lorentz spaces on which the Hardy Littlewood maximal operator is bounded. This is done by determining the weights for which Hardy’s inequality holds for nonincreasing functions. An alternate characterization, valid for nondecreasing weights, is also derived.
- Kenneth F. Andersen and Benjamin Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), no. 1, 9–26. MR 665888, DOI https://doi.org/10.4064/sm-72-1-9-26
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI https://doi.org/10.4064/sm-51-3-241-250
- Richard A. Hunt, On $L(p,\,q)$ spaces, Enseign. Math. (2) 12 (1966), 249–276. MR 223874
- G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37–55. MR 33449, DOI https://doi.org/10.2307/1969496
- G. G. Lorentz, On the theory of spaces $\Lambda $, Pacific J. Math. 1 (1951), 411–429. MR 44740
- Benjamin Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38. MR 311856, DOI https://doi.org/10.4064/sm-44-1-31-38
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI https://doi.org/10.1090/S0002-9947-1972-0293384-6
- Eric Sawyer, Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc. 281 (1984), no. 1, 329–337. MR 719673, DOI https://doi.org/10.1090/S0002-9947-1984-0719673-4
- E. M. Stein, Note on the class $L$ ${\rm log}$ $L$, Studia Math. 32 (1969), 305–310. MR 247534, DOI https://doi.org/10.4064/sm-32-3-305-310
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR 0304972
- Jan-Olov Strömberg and Alberto Torchinsky, Weighted Hardy spaces, Lecture Notes in Mathematics, vol. 1381, Springer-Verlag, Berlin, 1989. MR 1011673
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B25, 26D15, 46E30, 47B38
Retrieve articles in all journals with MSC: 42B25, 26D15, 46E30, 47B38
Additional Information
Article copyright:
© Copyright 1990
American Mathematical Society