Polynomial flows on $\textbf {C}^ n$
HTML articles powered by AMS MathViewer
- by Brian A. Coomes
- Trans. Amer. Math. Soc. 320 (1990), 493-506
- DOI: https://doi.org/10.1090/S0002-9947-1990-0998353-7
- PDF | Request permission
Abstract:
We show that polynomial flows on ${\mathbb {R}^n}$ extend to functions holomorphic on ${\mathbb {C}^{n + 1}}$ and that the group property holds after this extension. Then we give some methods, based on power series, for determining when a vector field has a polynomial flow.References
- Hyman Bass, Edwin H. Connell, and David Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287–330. MR 663785, DOI 10.1090/S0273-0979-1982-15032-7
- Hyman Bass and Gary Meisters, Polynomial flows in the plane, Adv. in Math. 55 (1985), no. 2, 173–208. MR 772614, DOI 10.1016/0001-8708(85)90020-9
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338 B. Coomes, Polynomial flows, symmetry groups, and conditions sufficient for injectivity of maps, Ph.D. thesis, University of Nebraska-Lincoln, 1988.
- Brian A. Coomes, The Lorenz system does not have a polynomial flow, J. Differential Equations 82 (1989), no. 2, 386–407. MR 1027976, DOI 10.1016/0022-0396(89)90140-X
- John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR 709768, DOI 10.1007/978-1-4612-1140-2 E. N. Lorenz, Deterministic non-periodic flows, J. Atmospheric Sci. 20 (1963), 130-141.
- Gary H. Meisters, Jacobian problems in differential equations and algebraic geometry, Rocky Mountain J. Math. 12 (1982), no. 4, 679–705. MR 683862, DOI 10.1216/RMJ-1982-12-4-679 —, Polynomial flows on ${\mathbb {R}^n}$, Proceedings of the Semester on Dynamical Systems, Banach Center Publ. 23, PWN, Warsaw, 1989, pp. 9-24.
- Gary H. Meisters and Czesław Olech, A poly-flow formulation of the Jacobian conjecture, Bull. Polish Acad. Sci. Math. 35 (1987), no. 11-12, 725–731 (English, with Russian summary). MR 961711
- Colin Sparrow, The Lorenz equations: bifurcations, chaos, and strange attractors, Applied Mathematical Sciences, vol. 41, Springer-Verlag, New York-Berlin, 1982. MR 681294, DOI 10.1007/978-1-4612-5767-7 M. Tabor and J. Weiss, Analytic structure of the Lorenz system, Phys. Rev. A 24 (1981), 2157-2167.
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 320 (1990), 493-506
- MSC: Primary 58F25; Secondary 34A15, 34A20
- DOI: https://doi.org/10.1090/S0002-9947-1990-0998353-7
- MathSciNet review: 998353