A canonical extension for analytic functions on Banach spaces
HTML articles powered by AMS MathViewer
- by Ignacio Zalduendo
- Trans. Amer. Math. Soc. 320 (1990), 747-763
- DOI: https://doi.org/10.1090/S0002-9947-1990-1001952-X
- PDF | Request permission
Abstract:
Given Banach spaces $E$ and $F$, a Banach space ${G_{EF}}$ is presented in which $E$ is embedded and which seems a natural space to which extend $F$-valued analytic functions. Any $F$-valued analytic function defined on a subset $U$ of $E$ may be extended to an open neighborhood of $U$ in ${G_{EF}}$. This extension generalizes that of Aron and Berner. It is also related to the Arens product in Banach algebras, to the functional calculus for bounded linear operators, and to an old problem of duality in spaces of analytic functions. A characterization of the Aron-Berner extension is given in terms of continuity properties of first-order differentials.References
- Richard Arens, Operations induced in function classes, Monatsh. Math. 55 (1951), 1–19. MR 44109, DOI 10.1007/BF01300644
- Richard Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839–848. MR 45941, DOI 10.1090/S0002-9939-1951-0045941-1
- Richard M. Aron and Paul D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), no. 1, 3–24 (English, with French summary). MR 508947
- Philip J. Boland, Holomorphic functions on nuclear spaces, Trans. Amer. Math. Soc. 209 (1975), 275–281. MR 388094, DOI 10.1090/S0002-9947-1975-0388094-3
- Soo Bong Chae, Holomorphy and calculus in normed spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 92, Marcel Dekker, Inc., New York, 1985. With an appendix by Angus E. Taylor. MR 788158
- Brian J. Cole and T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3) 53 (1986), no. 1, 112–142. MR 842158, DOI 10.1112/plms/s3-53.1.112
- A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), no. 2, 351–356. MR 947313, DOI 10.1090/S0002-9939-1989-0947313-8
- Seán Dineen, Holomorphically complete locally convex topological vector spaces, Séminaire Pierre Lelong (Analyse) (année 1971–1972), Lecture Notes in Math., Vol. 332, Springer, Berlin, 1973, pp. 77–111. MR 0377512
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- P. M. Gauthier and L. A. Rubel, Holomorphic functionals on open Riemann surfaces, Canadian J. Math. 28 (1976), no. 4, 885–888. MR 486561, DOI 10.4153/CJM-1976-085-x
- Alexandre Grothendieck, Sur certains espaces de fonctions holomorphes. I, J. Reine Angew. Math. 192 (1953), 35–64 (French). MR 58865, DOI 10.1515/crll.1953.192.35
- Gottfried Köthe, Dualität in der Funktionentheorie, J. Reine Angew. Math. 191 (1953), 30–49 (German). MR 56824, DOI 10.1515/crll.1953.191.30
- Luiza A. Moraes, A Hahn-Banach extension theorem for some holomorphic functions, Complex analysis, functional analysis and approximation theory (Campinas, 1984) North-Holland Math. Stud., vol. 125, North-Holland, Amsterdam, 1986, pp. 205–220. MR 893417
- Leopoldo Nachbin, Topology on spaces of holomorphic mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 47, Springer-Verlag New York, Inc., New York, 1969. MR 0254579 J. Sebastiao e Silva, As funções analíticas e a analíse functional, Portugal. Math. 9 (1950), 1-130.
- Heinz Günther Tillmann, Dualität in der Funktionentheorie auf Riemannschen Flächen, J. Reine Angew. Math. 195 (1956), 76–101 (1955) (German). MR 73936, DOI 10.1515/crll.1955.195.76
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 320 (1990), 747-763
- MSC: Primary 46G20
- DOI: https://doi.org/10.1090/S0002-9947-1990-1001952-X
- MathSciNet review: 1001952