The nonstandard treatment of Hilbert’s fifth problem
HTML articles powered by AMS MathViewer
 by Joram Hirschfeld PDF
 Trans. Amer. Math. Soc. 321 (1990), 379400 Request permission
Abstract:
We give a nonstandard proof that every locally Euclidean group is a Lie group. The heart of the proof is a strong nonstandard variant of Gleason’s lemma for a class of groups that includes all locally Euclidean groups.References

M. Bate, Non standard analysis of Lie groups, Thesis for the degree of M. Phil., Chelsea College.
 J. L. Bell and M. Machover, A course in mathematical logic, NorthHolland Publishing Co., AmsterdamNew YorkOxford, 1977. MR 0472455
 Irving Kaplansky, Lie algebras and locally compact groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1995. Reprint of the 1974 edition. MR 1324106
 J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578, DOI 10.1007/9783662419144
 Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New YorkLondon, 1955. MR 0073104
 Rohit Parikh, A nonstandard theory of topological groups, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967) Holt, Rinehart and Winston, New York, 1969, pp. 279–284. MR 0239964
 Abraham Robinson, Nonstandard analysis, NorthHolland Publishing Co., Amsterdam, 1966. MR 0205854
 Michael Singer, One parameter subgroups and nonstandard analysis, Manuscripta Math. 18 (1976), no. 1, 1–13. MR 396840, DOI 10.1007/BF01170531 L. Van Der Dries, Unpublished notes, 1981. D. T. Yang, Hilbert’s fifth problem and related problems in transformation groups, Proc. Sympos. Pure Math., vol. 28, Amer. Math. Soc., Providence, R.I., 1976, pp. 142146.
Additional Information
 © Copyright 1990 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 321 (1990), 379400
 MSC: Primary 22E15; Secondary 03H05, 22D05, 46Q05
 DOI: https://doi.org/10.1090/S00029947199009673146
 MathSciNet review: 967314