Abstract functional-differential equations and reaction-diffusion systems
HTML articles powered by AMS MathViewer
- by R. H. Martin and H. L. Smith
- Trans. Amer. Math. Soc. 321 (1990), 1-44
- DOI: https://doi.org/10.1090/S0002-9947-1990-0967316-X
- PDF | Request permission
Abstract:
Several fundamental results on the existence and behavior of solutions to semilinear functional differential equations are developed in a Banach space setting. The ideas are applied to reaction-diffusion systems that have time delays in the nonlinear reaction terms. The techniques presented here include differential inequalities, invariant sets, and Lyapunov functions, and therefore they provide for a wide range of applicability. The results on inequalities and especially strict inequalities are new even in the context of semilinear equations whose nonlinear terms do not contain delays.References
- W. E. Fitzgibbon, Semilinear functional differential equations in Banach space, J. Differential Equations 29 (1978), no. 1, 1–14. MR 492663, DOI 10.1016/0022-0396(78)90037-2
- Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
- Jerome A. Goldstein, Semigroups of linear operators and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR 790497
- Karl Kunisch and Wilhelm Schappacher, Order-preserving evolution operators of functional differential equations, Boll. Un. Mat. Ital. B (5) 16 (1979), no. 2, 480–500 (English, with Italian summary). MR 546470
- V. Lakshmikantham and S. Leela, Nonlinear differential equations in abstract spaces, International Series in Nonlinear Mathematics: Theory, Methods and Applications, vol. 2, Pergamon Press, Oxford-New York, 1981. MR 616449
- S. Leela and Vinicio Moauro, Existence of solutions in a closed set for delay differential equations in Banach spaces, Nonlinear Anal. 2 (1978), no. 1, 47–58. MR 512653, DOI 10.1016/0362-546X(78)90040-8
- James H. Lightbourne III, Function space flow invariance for functional-differential equations of retarded type, Proc. Amer. Math. Soc. 77 (1979), no. 1, 91–98. MR 539637, DOI 10.1090/S0002-9939-1979-0539637-7
- James H. Lightbourne III, Nonlinear retarded perturbation of a linear evolution system, Integral and functional differential equations (Proc. Conf., West Virginia Univ., Morgantown, W. Va., 1979) Lecture Notes in Pure and Appl. Math., vol. 67, Dekker, New York, 1981, pp. 201–212. MR 617050
- Robert H. Martin Jr., Nonlinear operators and differential equations in Banach spaces, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976. MR 0492671
- Robert H. Martin Jr., Nonlinear perturbations of linear evolution systems, J. Math. Soc. Japan 29 (1977), no. 2, 233–252. MR 447735, DOI 10.2969/jmsj/02920233
- Robert H. Martin Jr., Asymptotic stability and critical points for nonlinear quasimonotone parabolic systems, J. Differential Equations 30 (1978), no. 3, 391–423. MR 521861, DOI 10.1016/0022-0396(78)90008-6
- Robert H. Martin Jr., A maximum principle for semilinear parabolic systems, Proc. Amer. Math. Soc. 74 (1979), no. 1, 66–70. MR 521875, DOI 10.1090/S0002-9939-1979-0521875-0
- R. H. Martin Jr., Asymptotic behavior of solutions to a class of quasimonotone functional-differential equations, Abstract Cauchy problems and functional differential equations (Proc. Workshop, Leibnitz, 1979) Res. Notes in Math., vol. 48, Pitman, Boston, Mass.-London, 1981, pp. 91–111. MR 617214
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Samuel M. Rankin III, Existence and asymptotic behavior of a functional-differential equation in Banach space, J. Math. Anal. Appl. 88 (1982), no. 2, 531–542. MR 667076, DOI 10.1016/0022-247X(82)90211-6
- George Seifert, Positively invariant closed sets for systems of delay differential equations, J. Differential Equations 22 (1976), no. 2, 292–304. MR 427781, DOI 10.1016/0022-0396(76)90029-2
- Hal Smith, Monotone semiflows generated by functional-differential equations, J. Differential Equations 66 (1987), no. 3, 420–442. MR 876806, DOI 10.1016/0022-0396(87)90027-1
- Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146, DOI 10.1007/978-1-4684-0152-3
- C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 395–418. MR 382808, DOI 10.1090/S0002-9947-1974-0382808-3
- B. Z. Vulikh, Introduction to the theory of partially ordered spaces, Wolters-Noordhoff Scientific Publications, Ltd., Groningen, 1967. Translated from the Russian by Leo F. Boron, with the editorial collaboration of Adriaan C. Zaanen and Kiyoshi Iséki. MR 0224522
- G. F. Webb, Asymptotic stability for abstract nonlinear functional differential equations, Proc. Amer. Math. Soc. 54 (1976), 225–230. MR 402237, DOI 10.1090/S0002-9939-1976-0402237-0
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 321 (1990), 1-44
- MSC: Primary 35R10; Secondary 34K30, 35K57
- DOI: https://doi.org/10.1090/S0002-9947-1990-0967316-X
- MathSciNet review: 967316