Identities on quadratic Gauss sums
HTML articles powered by AMS MathViewer
- by Paul Gérardin and Wen-Ch’ing Winnie Li
- Trans. Amer. Math. Soc. 321 (1990), 159-182
- DOI: https://doi.org/10.1090/S0002-9947-1990-0974516-1
- PDF | Request permission
Abstract:
Given a local field $F$, each multiplicative character $\theta$ of the split algebra $F \times F$ or of a separable quadratic extension of $F$ has an associated generalized Gauss sum $\gamma _\theta ^F$. It is a complex valued function on the character group of ${F^ \times } \times F$, meromorphic in the first variable. We define a pairing between such Gauss sums and study its properties when $F$ is a nonarchimedean local field. This has important applications to the representation theory of $GL(2,F)$ and correspondences $[{\text {GL}}3]$.References
- P. Deligne, Les constantes des équations fonctionnelles des fonctions $L$, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973, pp. 501–597 (French). MR 0349635
- Paul Gérardin, Groupes quadratiques et applications arithmétiques, Séminaire de théorie des nombres, Paris 1984–85, Progr. Math., vol. 63, Birkhäuser Boston, Boston, MA, 1986, pp. 79–95 (French). MR 897343
- Paul Gérardin and Philip Kutzko, Facteurs locaux pour $\textrm {GL}(2)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 3, 349–384 (French). MR 597744, DOI 10.24033/asens.1386
- Paul Gérardin and Wen-Ch’ing Winnie Li, A functional equation for degree two local factors, Canad. Math. Bull. 28 (1985), no. 3, 355–371. MR 790958, DOI 10.4153/CMB-1985-043-0
- Paul Gérardin and Wen-Ch’ing Winnie Li, Fourier transforms of representations of quaternions, J. Reine Angew. Math. 359 (1985), 121–173. MR 794802
- Paul Gérardin and Wen-Ch’ing Winnie Li, Identities on quadratic Gauss sums, Trans. Amer. Math. Soc. 321 (1990), no. 1, 159–182. MR 974516, DOI 10.1090/S0002-9947-1990-0974516-1
- Wen-Ch’ing Winnie Li, Barnes’ identities and representations of $\textrm {GL}(2)$. II. Non-Archimedean local field case, J. Reine Angew. Math. 345 (1983), 69–92. MR 717887, DOI 10.1515/crll.1983.345.69
- Jean-Pierre Serre, Corps locaux, Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968 (French). Deuxième édition. MR 0354618
- André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143–211 (French). MR 165033, DOI 10.1007/BF02391012
- André Weil, Basic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer-Verlag New York, Inc., New York, 1967. MR 0234930, DOI 10.1007/978-3-662-00046-5 —, Fonctions zeta et distributions, Séminaire Bourbaki, Juin 1966.
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 321 (1990), 159-182
- MSC: Primary 11S37; Secondary 11L05, 22E50
- DOI: https://doi.org/10.1090/S0002-9947-1990-0974516-1
- MathSciNet review: 974516