Generalized local Fatou theorems and area integrals
HTML articles powered by AMS MathViewer
- by B. A. Mair, Stan Philipp and David Singman
- Trans. Amer. Math. Soc. 321 (1990), 401-413
- DOI: https://doi.org/10.1090/S0002-9947-1990-0974520-3
- PDF | Request permission
Abstract:
Let $X$ be a space of homogeneous type and $W$ a subset of $X \times (0,\infty )$. Then, under minimal conditions on $W$, we obtain a relationship between two modes of convergence at the boundary $X$ for functions defined on $W$. This result gives new local Fatou theorems of the Carleson-type for solutions of Laplace, parabolic and Laplace-Beltrami equations as immediate consequences of the classical results. Lusin area integral characterizations for the existence of limits within these more general approach regions are also obtained.References
- M. Brelot and J. L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 395–415 (French). MR 196107 A. P. Calderón, On the behavior of harmonic functions at the boundary, Trans. Amer. Math. Soc. 68 (1950), 47-54.
- Lennart Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4 (1962), 393–399 (1962). MR 159013, DOI 10.1007/BF02591620
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948
- Daryl Geller, Some results in $H^{p}$ theory for the Heisenberg group, Duke Math. J. 47 (1980), no. 2, 365–390. MR 575902
- J. R. Hattemer, Boundary behavior of temperatures. I, Studia Math. 25 (1964/65), 111–155. MR 181838, DOI 10.4064/sm-25-1-111-155
- Adam Korányi, Harmonic functions on Hermitian hyperbolic space, Trans. Amer. Math. Soc. 135 (1969), 507–516. MR 277747, DOI 10.1090/S0002-9947-1969-0277747-0
- A. Korányi and R. B. Putz, Local Fatou theorem and area theorem for symmetric spaces of rank one, Trans. Amer. Math. Soc. 224 (1976), no. 1, 157–168. MR 492068, DOI 10.1090/S0002-9947-1976-0492068-2
- B. A. Mair, Fine and parabolic limits for solutions of second-order linear parabolic equations on an infinite slab, Trans. Amer. Math. Soc. 284 (1984), no. 2, 583–599. MR 743734, DOI 10.1090/S0002-9947-1984-0743734-7
- B. A. Mair, Boundary behavior of positive solutions of the heat equation on a semi-infinite slab, Trans. Amer. Math. Soc. 295 (1986), no. 2, 687–697. MR 833703, DOI 10.1090/S0002-9947-1986-0833703-2
- B. A. Mair and David Singman, A generalized Fatou theorem, Trans. Amer. Math. Soc. 300 (1987), no. 2, 705–719. MR 876474, DOI 10.1090/S0002-9947-1987-0876474-7
- Alexander Nagel and Elias M. Stein, On certain maximal functions and approach regions, Adv. in Math. 54 (1984), no. 1, 83–106. MR 761764, DOI 10.1016/0001-8708(84)90038-0
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Juan Sueiro, On maximal functions and Poisson-Szegő integrals, Trans. Amer. Math. Soc. 298 (1986), no. 2, 653–669. MR 860386, DOI 10.1090/S0002-9947-1986-0860386-8
- C. C. Tu, Non-tangential limits of a solution of a boundary-value problem for the heat equation, Math. Systems Theory 3 (1969), 130–138. MR 249840, DOI 10.1007/BF01746519
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 321 (1990), 401-413
- MSC: Primary 31B25
- DOI: https://doi.org/10.1090/S0002-9947-1990-0974520-3
- MathSciNet review: 974520