## Weakly almost periodic functions and thin sets in discrete groups

HTML articles powered by AMS MathViewer

- by Ching Chou PDF
- Trans. Amer. Math. Soc.
**321**(1990), 333-346 Request permission

## Abstract:

A subset $E$ of an infinite discrete group $G$ is called (i) an ${R_W}$-set if any bounded function on $G$ supported by $E$ is weakly almost periodic, (ii) a weak $p$-Sidon set $(1 \leq p < 2)$ if on ${l^1}(E)$ the ${l^p}$-norm is bounded by a constant times the maximal ${C^*}$-norm of ${l^1}(G)$, (iii) a $T$-set if $xE \cap E$ and $Ex \cap E$ are finite whenever $x \ne e$, and (iv) an $FT$-set if it is a finite union of $T$-sets. In this paper, we study relationships among these four classes of thin sets. We show, among other results, that (a) every infinite group $G$ contains an ${R_W}$-set which is not an $FT$-set; (b) countable weak $p$-Sidon sets, $1 \leq p < 4/3$ are $FT$-sets.## References

- Ron Blei,
*Combinatorial dimension and certain norms in harmonic analysis*, Amer. J. Math.**106**(1984), no. 4, 847–887. MR**749259**, DOI 10.2307/2374326 - J. Bourgain,
*Propriétés de décomposition pour les ensembles de Sidon*, Bull. Soc. Math. France**111**(1983), no. 4, 421–428 (French, with English summary). MR**763552** - R. B. Burckel,
*Weakly almost periodic functions on semigroups*, Gordon and Breach Science Publishers, New York-London-Paris, 1970. MR**0263963** - Ching Chou,
*Weakly almost periodic functions and Fourier-Stieltjes algebras of locally compact groups*, Trans. Amer. Math. Soc.**274**(1982), no. 1, 141–157. MR**670924**, DOI 10.1090/S0002-9947-1982-0670924-2 - Myriam Déchamps-Gondim,
*Ensembles de Sidon topologiques*, Ann. Inst. Fourier (Grenoble)**22**(1972), no. 3, 51–79 (French, with English summary). MR**340981** - Stephen William Drury,
*Sur les ensembles de Sidon*, C. R. Acad. Sci. Paris Sér. A-B**271**(1970), A162–A163 (French). MR**271647** - R. E. Edwards and Kenneth A. Ross,
*$p$-Sidon sets*, J. Functional Analysis**15**(1974), 404–427. MR**0358228**, DOI 10.1016/0022-1236(74)90031-7 - Pierre Eymard,
*L’algèbre de Fourier d’un groupe localement compact*, Bull. Soc. Math. France**92**(1964), 181–236 (French). MR**228628** - Harry Furstenberg,
*Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions*, J. Analyse Math.**31**(1977), 204–256. MR**498471**, DOI 10.1007/BF02813304 - A. Grothendieck,
*Critères de compacité dans les espaces fonctionnels généraux*, Amer. J. Math.**74**(1952), 168–186 (French). MR**47313**, DOI 10.2307/2372076 - Kathryn E. Hare,
*Arithmetic properties of thin sets*, Pacific J. Math.**131**(1988), no. 1, 143–155. MR**917869** - G. W. Johnson and Gordon S. Woodward,
*On $p$-Sidon sets*, Indiana Univ. Math. J.**24**(1974/75), 161–167. MR**350328**, DOI 10.1512/iumj.1974.24.24013
J. M. López and K. A. Ross, Lecture Notes in Pure and Appl. Math.,, Dekker, New York, 1975.
- Jean-Paul Pier,
*Amenable locally compact groups*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR**767264** - Massimo Angelo Picardello,
*Lacunary sets in discrete noncommutative groups*, Boll. Un. Mat. Ital. (4)**8**(1973), 494–508 (English, with Italian summary). MR**0344804** - Donald E. Ramirez,
*Weakly almost periodic functions and Fourier-Stieltjes transforms*, Proc. Amer. Math. Soc.**19**(1968), 1087–1088. MR**232162**, DOI 10.1090/S0002-9939-1968-0232162-5 - Walter Rudin,
*Weak almost periodic functions and Fourier-Stieltjes transforms*, Duke Math. J.**26**(1959), 215–220. MR**102705** - W. A. F. Ruppert,
*On weakly almost periodic sets*, Semigroup Forum**32**(1985), no. 3, 267–281. MR**815876**, DOI 10.1007/BF02575544 - Czesław Ryll-Nardzewski,
*On fixed points of semigroups of endomorphisms of linear spaces*, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 55–61. MR**0215134** - E. Szemerédi,
*On sets of integers containing no $k$ elements in arithmetic progression*, Acta Arith.**27**(1975), 199–245. MR**369312**, DOI 10.4064/aa-27-1-199-245

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**321**(1990), 333-346 - MSC: Primary 43A46; Secondary 43A07, 43A30, 43A60
- DOI: https://doi.org/10.1090/S0002-9947-1990-0984855-6
- MathSciNet review: 984855