Weakly almost periodic functions and thin sets in discrete groups
HTML articles powered by AMS MathViewer
- by Ching Chou
- Trans. Amer. Math. Soc. 321 (1990), 333-346
- DOI: https://doi.org/10.1090/S0002-9947-1990-0984855-6
- PDF | Request permission
Abstract:
A subset $E$ of an infinite discrete group $G$ is called (i) an ${R_W}$-set if any bounded function on $G$ supported by $E$ is weakly almost periodic, (ii) a weak $p$-Sidon set $(1 \leq p < 2)$ if on ${l^1}(E)$ the ${l^p}$-norm is bounded by a constant times the maximal ${C^*}$-norm of ${l^1}(G)$, (iii) a $T$-set if $xE \cap E$ and $Ex \cap E$ are finite whenever $x \ne e$, and (iv) an $FT$-set if it is a finite union of $T$-sets. In this paper, we study relationships among these four classes of thin sets. We show, among other results, that (a) every infinite group $G$ contains an ${R_W}$-set which is not an $FT$-set; (b) countable weak $p$-Sidon sets, $1 \leq p < 4/3$ are $FT$-sets.References
- Ron Blei, Combinatorial dimension and certain norms in harmonic analysis, Amer. J. Math. 106 (1984), no. 4, 847–887. MR 749259, DOI 10.2307/2374326
- J. Bourgain, Propriétés de décomposition pour les ensembles de Sidon, Bull. Soc. Math. France 111 (1983), no. 4, 421–428 (French, with English summary). MR 763552
- R. B. Burckel, Weakly almost periodic functions on semigroups, Gordon and Breach Science Publishers, New York-London-Paris, 1970. MR 0263963
- Ching Chou, Weakly almost periodic functions and Fourier-Stieltjes algebras of locally compact groups, Trans. Amer. Math. Soc. 274 (1982), no. 1, 141–157. MR 670924, DOI 10.1090/S0002-9947-1982-0670924-2
- Myriam Déchamps-Gondim, Ensembles de Sidon topologiques, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 3, 51–79 (French, with English summary). MR 340981
- Stephen William Drury, Sur les ensembles de Sidon, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A162–A163 (French). MR 271647
- R. E. Edwards and Kenneth A. Ross, $p$-Sidon sets, J. Functional Analysis 15 (1974), 404–427. MR 0358228, DOI 10.1016/0022-1236(74)90031-7
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168–186 (French). MR 47313, DOI 10.2307/2372076
- Kathryn E. Hare, Arithmetic properties of thin sets, Pacific J. Math. 131 (1988), no. 1, 143–155. MR 917869
- G. W. Johnson and Gordon S. Woodward, On $p$-Sidon sets, Indiana Univ. Math. J. 24 (1974/75), 161–167. MR 350328, DOI 10.1512/iumj.1974.24.24013 J. M. López and K. A. Ross, Lecture Notes in Pure and Appl. Math.,, Dekker, New York, 1975.
- Jean-Paul Pier, Amenable locally compact groups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 767264
- Massimo Angelo Picardello, Lacunary sets in discrete noncommutative groups, Boll. Un. Mat. Ital. (4) 8 (1973), 494–508 (English, with Italian summary). MR 0344804
- Donald E. Ramirez, Weakly almost periodic functions and Fourier-Stieltjes transforms, Proc. Amer. Math. Soc. 19 (1968), 1087–1088. MR 232162, DOI 10.1090/S0002-9939-1968-0232162-5
- Walter Rudin, Weak almost periodic functions and Fourier-Stieltjes transforms, Duke Math. J. 26 (1959), 215–220. MR 102705
- W. A. F. Ruppert, On weakly almost periodic sets, Semigroup Forum 32 (1985), no. 3, 267–281. MR 815876, DOI 10.1007/BF02575544
- Czesław Ryll-Nardzewski, On fixed points of semigroups of endomorphisms of linear spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 55–61. MR 0215134
- E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Acta Arith. 27 (1975), 199–245. MR 369312, DOI 10.4064/aa-27-1-199-245
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 321 (1990), 333-346
- MSC: Primary 43A46; Secondary 43A07, 43A30, 43A60
- DOI: https://doi.org/10.1090/S0002-9947-1990-0984855-6
- MathSciNet review: 984855