## Nonmonomial characters and Artin’s conjecture

HTML articles powered by AMS MathViewer

- by Richard Foote PDF
- Trans. Amer. Math. Soc.
**321**(1990), 261-272 Request permission

## Abstract:

If $E/F$ is a Galois extension of number fields with solvable Galois group $G$, the main result of this paper proves that if the Dedekind zeta-function of $E$ has a zero of order less than ${\mathcal {M}_G}$ at the complex point ${s_0} \ne 1$, then all Artin $L$-series for $G$ are holomorphic at ${s_0}$ — here ${\mathcal {M}_G}$ is the smallest degree of a nonmonomial character of any subgroup of $G$. The proof relies only on certain properties of $L$-functions which are axiomatized to give a purely character-theoretic statement of this result.## References

- Charles W. Curtis and Irving Reiner,
*Representation theory of finite groups and associative algebras*, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Reprint of the 1962 original; A Wiley-Interscience Publication. MR**1013113** - Everett C. Dade,
*Characters of groups with normal extra special subgroups*, Math. Z.**152**(1977), no. 1, 1–31. MR**486085**, DOI 10.1007/BF01214219 - Walter Feit,
*Characters of finite groups*, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR**0219636** - Richard Foote and V. Kumar Murty,
*Zeros and poles of Artin $L$-series*, Math. Proc. Cambridge Philos. Soc.**105**(1989), no. 1, 5–11. MR**966135**, DOI 10.1017/S0305004100001316 - Richard Foote and David Wales,
*Zeros of order $2$ of Dedekind zeta functions and Artin’s conjecture*, J. Algebra**131**(1990), no. 1, 226–257. MR**1055006**, DOI 10.1016/0021-8693(90)90173-L - Daniel Gorenstein,
*Finite groups*, Harper & Row, Publishers, New York-London, 1968. MR**0231903** - H. Heilbronn,
*Zeta-functions and $L$-functions*, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 204–230. MR**0218327**
—, - B. Huppert,
*Endliche Gruppen. I*, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR**0224703**, DOI 10.1007/978-3-642-64981-3 - David T. Price,
*Character ramification and $M$-groups*, Math. Z.**130**(1973), 325–337. MR**320129**, DOI 10.1007/BF01179160 - Robert W. van der Waall,
*Minimal non-$M$-groups. III*, Nederl. Akad. Wetensch. Indag. Math.**45**(1983), no. 4, 483–492. MR**731831**, DOI 10.1016/S1385-7258(83)80025-0

*On real zeros of Dedekind*$\zeta$

*-functions*, The collected papers of Hans Arnold Heilbronn, Wiley, New York, 1988.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**321**(1990), 261-272 - MSC: Primary 11R42; Secondary 11R32
- DOI: https://doi.org/10.1090/S0002-9947-1990-0987161-9
- MathSciNet review: 987161