## Complex interpolation for normed and quasi-normed spaces in several dimensions. III. Regularity results for harmonic interpolation

HTML articles powered by AMS MathViewer

- by Zbigniew Slodkowski PDF
- Trans. Amer. Math. Soc.
**321**(1990), 305-332 Request permission

## Abstract:

The paper continues the study of one of the complex interpolation methods for families of finite-dimensional normed spaces ${\{ {{\mathbf {C}}^n},|| \cdot |{|_z}\} _{z \in G}}$, where $G$ is open and bounded in ${{\mathbf {C}}^k}$. The main result asserts that (under a mild assumption on the datum) the norm function $(z,w) \to ||w||_z^2$ belongs to some anisotropic Sobolew class and is characterized by a nonlinear PDE of second order. The proof uses the duality theorem for the harmonic interpolation method (obtained earlier by the author). A new, simpler proof of this duality relation is also presented in the paper.## References

- Edgar Asplund,
*Fréchet differentiability of convex functions*, Acta Math.**121**(1968), 31–47. MR**231199**, DOI 10.1007/BF02391908 - Eric Bedford and B. A. Taylor,
*The Dirichlet problem for a complex Monge-Ampère equation*, Invent. Math.**37**(1976), no. 1, 1–44. MR**445006**, DOI 10.1007/BF01418826 - R. R. Coifman, R. Rochberg, G. Weiss, M. Cwikel, and Y. Sagher,
*The complex method for interpolation of operators acting on families of Banach spaces*, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979) Lecture Notes in Math., vol. 779, Springer, Berlin, 1980, pp. 123–153. MR**576042** - R. R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher, and G. Weiss,
*A theory of complex interpolation for families of Banach spaces*, Adv. in Math.**43**(1982), no. 3, 203–229. MR**648799**, DOI 10.1016/0001-8708(82)90034-2
R. Coifman and S. Semmes, - Mahlon M. Day,
*Normed linear spaces*, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR**0344849** - W. K. Hayman and P. B. Kennedy,
*Subharmonic functions. Vol. I*, London Mathematical Society Monographs, No. 9, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR**0460672** - Edwin Hewitt and Karl Stromberg,
*Real and abstract analysis*, Graduate Texts in Mathematics, No. 25, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing. MR**0367121** - Christer O. Kiselman,
*The partial Legendre transformation for plurisubharmonic functions*, Invent. Math.**49**(1978), no. 2, 137–148. MR**511187**, DOI 10.1007/BF01403083
V. G. Mazja, - Richard Rochberg,
*The work of Coifman and Semmes on complex interpolation, several complex variables, and PDEs*, Function spaces and applications (Lund, 1986) Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 74–90. MR**942258**, DOI 10.1007/BFb0078864 - Richard Rochberg,
*Interpolation of Banach spaces and negatively curved vector bundles*, Pacific J. Math.**110**(1984), no. 2, 355–376. MR**726495** - Richard Rochberg and Guido Weiss,
*Some topics in complex interpolation theory*, Topics in modern harmonic analysis, Vol. I, II (Turin/Milan, 1982) Ist. Naz. Alta Mat. Francesco Severi, Rome, 1983, pp. 769–818. MR**748883**
Z. Slodkowski, - Zbigniew Slodkowski,
*Local maximum property and $q$-plurisubharmonic functions in uniform algebras*, J. Math. Anal. Appl.**115**(1986), no. 1, 105–130. MR**835588**, DOI 10.1016/0022-247X(86)90027-2 - Zbigniew Slodkowski,
*Pseudoconvex classes of functions. I. Pseudoconcave and pseudoconvex sets*, Pacific J. Math.**134**(1988), no. 2, 343–376. MR**961240** - Zbigniew Slodkowski,
*Complex interpolation of normed and quasinormed spaces in several dimensions. I*, Trans. Amer. Math. Soc.**308**(1988), no. 2, 685–711. MR**951623**, DOI 10.1090/S0002-9947-1988-0951623-1 - Zbigniew Slodkowski,
*Pseudoconvex classes of functions. III. Characterization of dual pseudoconvex classes on complex homogeneous spaces*, Trans. Amer. Math. Soc.**309**(1988), no. 1, 165–189. MR**957066**, DOI 10.1090/S0002-9947-1988-0957066-9 - Zbigniew Slodkowski,
*Complex interpolation of normed and quasinormed spaces in several dimensions. II. Properties of harmonic interpolation*, Trans. Amer. Math. Soc.**317**(1990), no. 1, 255–285. MR**949900**, DOI 10.1090/S0002-9947-1990-0949900-2 - A. I. Vol′pert,
*Spaces $\textrm {BV}$ and quasilinear equations*, Mat. Sb. (N.S.)**73 (115)**(1967), 255–302 (Russian). MR**0216338** - Shoshichi Kobayashi,
*Negative vector bundles and complex Finsler structures*, Nagoya Math. J.**57**(1975), 153–166. MR**377126**
R. Coifman and S. Semmes, - Stephen Semmes,
*Interpolation of Banach spaces, differential geometry and differential equations*, Rev. Mat. Iberoamericana**4**(1988), no. 1, 155–176. MR**1009123**, DOI 10.4171/RMI/67

*Interpolation of Banach spaces and nonlinear Dirichlet problems*, Lecture Notes in Math., vol. 1302, Springer-Verlag, Berlin and New York, 1988.

*Sobolew spaces*, Springer-Verlag, Berlin, 1985.

*Analytic multifunctions and their applications*, talk at the Banach Space Conference, Kent, August 1985. —,

*Complex interpolation families of normed spaces over several-dimensional parameter space*, Abstracts of the Special Session in Several Complex Variables, 826th Meeting of the AMS, Indianapolis, April 1986. —,

*On complex interpolation methods for families of normed spaces over domains in*${C^k}$, talk at the International Conference on Harmonic Measure, Toledo, Ohio, July 1986.

*Interpolation of Banach spaces, Perron processes and Yang-Mills*.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**321**(1990), 305-332 - MSC: Primary 46M35; Secondary 32F05, 46B70
- DOI: https://doi.org/10.1090/S0002-9947-1990-0991968-1
- MathSciNet review: 991968