## On Gel′fand pairs associated with solvable Lie groups

HTML articles powered by AMS MathViewer

- by Chal Benson, Joe Jenkins and Gail Ratcliff PDF
- Trans. Amer. Math. Soc.
**321**(1990), 85-116 Request permission

## Abstract:

Let $G$ be a locally compact group, and let $K$ be a compact subgroup of ${\operatorname {Aut}}(G)$, the group of automorphisms of $G$. There is a natural action of $K$ on the convolution algebra ${L^1}(G)$, and we denote by $L_K^1(G)$ the subalgebra of those elements in ${L^1}(G)$ that are invariant under this action. The pair $(K,G)$ is called a Gelfand pair if $L_K^1(G)$ is commutative. In this paper we consider the case where $G$ is a connected, simply connected solvable Lie group and $K \subseteq {\operatorname {Aut}}(G)$ is a compact, connected group. We characterize such Gelfand pairs $(K,G)$, and determine a moduli space for the associated $K$-spherical functions.## References

- Theodor Bröcker and Tammo tom Dieck,
*Representations of compact Lie groups*, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR**781344**, DOI 10.1007/978-3-662-12918-0 - Giovanna Carcano,
*A commutativity condition for algebras of invariant functions*, Boll. Un. Mat. Ital. B (7)**1**(1987), no. 4, 1091–1105 (English, with Italian summary). MR**923441** - Hacen Dib,
*Polynômes de Laguerre d’un argument matriciel*, C. R. Acad. Sci. Paris Sér. I Math.**304**(1987), no. 4, 111–114 (French, with English summary). MR**890627** - I. M. Gel′fand,
*Spherical functions in symmetric Riemann spaces*, Doklady Akad. Nauk SSSR (N.S.)**70**(1950), 5–8 (Russian). MR**0033832** - Sigurdur Helgason,
*Groups and geometric analysis*, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR**754767** - Carl S. Herz,
*Bessel functions of matrix argument*, Ann. of Math. (2)**61**(1955), 474–523. MR**69960**, DOI 10.2307/1969810 - Roger Howe,
*Quantum mechanics and partial differential equations*, J. Functional Analysis**38**(1980), no. 2, 188–254. MR**587908**, DOI 10.1016/0022-1236(80)90064-6 - A. Hulanicki and F. Ricci,
*A Tauberian theorem and tangential convergence for bounded harmonic functions on balls in $\textbf {C}^{n}$*, Invent. Math.**62**(1980/81), no. 2, 325–331. MR**595591**, DOI 10.1007/BF01389163 - J. W. Jenkins,
*Growth of connected locally compact groups*, J. Functional Analysis**12**(1973), 113–127. MR**0349895**, DOI 10.1016/0022-1236(73)90092-x - Horst Leptin,
*A new kind of eigenfunction expansions on groups*, Pacific J. Math.**116**(1985), no. 1, 45–67. MR**769822**, DOI 10.2140/pjm.1985.116.45 - H. Leptin,
*On group algebras of nilpotent Lie groups*, Studia Math.**47**(1973), 37–49. MR**330925**, DOI 10.4064/sm-47-1-37-49 - Jean Ludwig,
*Polynomial growth and ideals in group algebras*, Manuscripta Math.**30**(1980), no. 3, 215–221. MR**557105**, DOI 10.1007/BF01303328 - V. G. Kac,
*Some remarks on nilpotent orbits*, J. Algebra**64**(1980), no. 1, 190–213. MR**575790**, DOI 10.1016/0021-8693(80)90141-6 - A. Kaplan and F. Ricci,
*Harmonic analysis on groups of Heisenberg type*, Harmonic analysis (Cortona, 1982) Lecture Notes in Math., vol. 992, Springer, Berlin, 1983, pp. 416–435. MR**729367**, DOI 10.1007/BFb0069172 - A. A. Kirillov,
*Unitary representations of nilpotent Lie groups*, Uspehi Mat. Nauk**17**(1962), no. 4 (106), 57–110 (Russian). MR**0142001** - George W. Mackey,
*Unitary group representations in physics, probability, and number theory*, Mathematics Lecture Note Series, vol. 55, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1978. MR**515581** - M. A. Naĭmark,
*Normed rings*, Reprinting of the revised English edition, Wolters-Noordhoff Publishing, Groningen, 1970. Translated from the first Russian edition by Leo F. Boron. MR**0355601** - Michael E. Taylor,
*Noncommutative harmonic analysis*, Mathematical Surveys and Monographs, vol. 22, American Mathematical Society, Providence, RI, 1986. MR**852988**, DOI 10.1090/surv/022

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**321**(1990), 85-116 - MSC: Primary 22E25; Secondary 22D25, 43A20
- DOI: https://doi.org/10.1090/S0002-9947-1990-1000329-0
- MathSciNet review: 1000329