ON THE EXISTENCE OF CENTRAL SEQUENCES IN SUBFACTORS

DIETMAR H. BISCH

Abstract

We prove a relative version of [Co1, Theorem 2.1] for a pair of type II_{1}-factors $N \subset M$. This gives a list of necessary and sufficient conditions for the existence of nontrivial central sequences of M contained in the subfactor N. As an immediate application we obtain a result by Bédos [Be, Theorem A], showing that if N has property Γ and G is an amenable group acting freely on N via some action σ, then the crossed product $N \times{ }_{\sigma} G$ has property Γ. We also include a proof of a relative Mc Duff-type theorem (see [McD, Theorems 1,2 and 3]), which gives necessary and sufficient conditions implying that the pair $N \subset M$ is stable.

Introduction

The property Γ for a factor of type II_{1} was introduced by Murray-von Neumann (see $[\mathrm{MvN}]$) to distinguish two different classes of factors. It describes an asymptotic commutativity property of the algebra. A stronger property was later considered by Mc Duff (see [McD]) in order to construct more examples of factors. Both concepts turned out to be essential. Connes used them in his fundamental papers (see [Co1, Co2]), not only to prove the uniqueness of the hyperfinite II_{1}-factor R, but also to classify the automorphisms of R. He gives some surprising alternative characterizations of these properties in [Col, Theorem 2.1].

In this paper we study necessary and sufficient conditions for the existence of nontrivial central sequences in a type II_{1}-factor M that are contained in a subfactor $N \subset M$. Our work is motivated by Problem 3 in [Jo] and the related generating problem for pairs of hyperfinite factors with finite index (see [Po3, Oc]): Jones asks in [Jo] for conditions implying that the pair $N \subset M$ is stable, i.e. isomorphic to the pair $N \bar{\otimes} R \subset M \bar{\otimes} R$. If $N \subset M$ are hyperfinite and have the generating property, then the pair $N \subset M$ is stable. A necessary condition for stability and hence for the generating property as well, is the existence of nontrivial central sequences of M contained in N.

In the first section we prove a relative version of Connes' Theorem 2.1 in [Co1]. We show that the existence of central sequences for the ambient factor M that are actually contained in N is equivalent to the existence of a singular state φ of M that is invariant under a finitely generated subgroup of Int M

[^0]and factors through the conditional expectation E_{N} from M onto N. This is equivalent to saying that there is no nonzero compact operator of $B\left(L^{2}(M, \tau)\right)$ contained in the C^{*}-algebra generated by M, M^{\prime} and e_{N}, where e_{N} denotes the orthogonal projection from $L^{2}(M, \tau)$ onto $L^{2}(N, \tau)$. The proof of our theorem closely follows the ideas of Connes' proof.

In the second section we give some applications to crossed products. We show that if N is a separable II_{1}-factor with property Γ and G is an amenable group acting freely on N, then the crossed product $N \times{ }_{\sigma} G$ also has property Γ. Popa proves this result in [Po2] for $G=\mathbf{Z}$ and conjectures it for a general amenable group, which was shown to be true by Bédos [Be, Theorem A]. Bédos uses a technique involving the decomposition of the crossed product [Be, Proposition 3]. We derive the result as an immediate application of the main theorem in §1.

In the third section we prove a relative version of Mc Duff's theorem (see [McD, Theorems 1, 2 and 3]. This result, showing that $N \subset M$ is stable if and only if N contains noncommuting central sequences of M, was probably noticed by specialists, but no detailed proof seems to exist in the literature.

Notation. M denotes a separable II_{1}-factor acting on the Hilbert space $L^{2}(M, \tau)$, where τ is the normal faithful normalized trace on $M . N \subset$ M is a subfactor and $E_{N}: M \mapsto N$ the unique conditional expectation with $\tau \circ E_{N}=\tau . \quad e_{N}$ denotes the orthogonal projection from $L^{2}(M, \tau)$ onto $L^{2}(N, \tau) \subset L^{2}(M, \tau)$, and $\|x\|_{2}=\tau\left(x^{*} x\right)^{1 / 2}, x \in M$, is the Hilbert norm as usual. Furthermore J will be the canonical involution in $L^{2}(M, \tau)$, i.e. $J x=x^{*}$ for all $x \in M$. We denote by \otimes the algebraic tensor product and by $\bar{\otimes}$ the von Neumann algebra tensor product. $B\left(L^{2}(M, \tau)\right)$ is the algebra of bounded linear operators on $L^{2}(M, \tau)$.

Acknowledgment. I am very grateful to Professor Sorin Popa, who suggested this problem to me.

1. Central sequences in subfactors

We recall that M has property Γ if for given elements $x_{1}, \ldots, x_{n} \in M$ and $\varepsilon>0$ there is a unitary $u \in M$ with $\tau(u)=0$ such that $\left\|\left[x_{i}, u\right]\right\|_{2} \leq \varepsilon$, $1 \leq i \leq n$. If $N \subset M$ is a subfactor, we are interested in conditions that asssure that the unitary u is actually contained in N. We obtain the following theorem:

Theorem 1.1. Let M be a separable II_{1}-factor with subfactor $N \subset M$. Then the following conditions are equivalent:
1°. For any elements $x_{1}, \ldots, x_{n} \in M$ and $\varepsilon>0$ there is a unitary $u \in N$ with $\tau(u)=0$ and $\left\|\left[x_{i}, u\right]\right\|_{2} \leq \varepsilon$ for all $i=1, \ldots, n$.
2°. For any finitely generated group $G \subset$ Int M there is a nonnormal G invariant state $\varphi \in M^{*}$ with $\varphi \circ E_{N}=\varphi$.
2^{10}. Let $N \subset M_{0} \subset M$ be a $\|\cdot\|_{2}$-dense $*$-subalgebra of M.
For any elements $x_{1}, \ldots, x_{n} \in M_{0}$ there is a nonnormal state $\varphi \in M^{*}$ with $\varphi\left(x x_{i}\right)=\varphi\left(x_{i} x\right)$ for all $x \in M, 1 \leq i \leq n$, and $\varphi \circ E_{N}=\varphi$.
3°. For any operators $x_{1}, \ldots, x_{n} \in M$ there is a sequence $\left(\xi_{k}\right)_{k \in \mathbf{N}} \subset$ $L^{2}(N, \tau),\left\|\xi_{k}\right\|_{2}=1,\left|\left\langle\xi_{k}, 1\right\rangle\right| \nrightarrow 1$ as $k \rightarrow \infty$, such that $\left\|\left[x_{i}, \xi_{k}\right]\right\|_{2}$ $\rightarrow 0$.
4°. The C^{*}-algebra $C^{*}\left(M, M^{\prime}, e_{N}\right)$ generated by M, M^{\prime}, e_{N} in $B\left(L^{2}(M, \tau)\right)$ does not contain any nonzero compact operator, i.e.

$$
C^{*}\left(M, M^{\prime}, e_{N}\right) \cap \mathscr{K}\left(L^{2}(M, \tau)\right)=\{0\} .
$$

The proof of this theorem will use the following lemmata.
Lemma 1.2. Let $N \subset M$ be II_{1}-factors as in Theorem 1.1, satisfying 2°. Then for any elements $x_{1}, \ldots, x_{n} \in M$ and $\varepsilon>0$ there is a nonzero projection $e \in N$ with $\tau(e) \leq \varepsilon$ and

$$
\left\|\left[x_{i}, e\right]\right\|_{2} \leq \varepsilon\|e\|_{2}, \quad 1 \leq i \leq n
$$

Proof. We may assume that the given elements x_{i} are in fact unitaries, denoted by $u_{i}, 1 \leq i \leq n$. By hypothesis there is a singular state $\varphi \in M^{*}$ with

$$
\begin{aligned}
& \varphi=\varphi \circ \operatorname{Ad} u_{i}, \quad 1 \leq i \leq n \\
& \varphi=\varphi \circ E_{N}
\end{aligned}
$$

Then there is a projection $f \in N$ with $\varphi(f)=1, \tau(f)<\varepsilon, 0<\varepsilon<\frac{1}{2}$ (see [Ta1]). Set

$$
\begin{aligned}
V & :=\{\psi \text { state on } M \mid \psi(f) \geq 1-\varepsilon\} \subset M^{*} \\
W & :=\left\{\left(\psi-\psi \circ E_{N}, \psi-\psi \circ \operatorname{Ad} u_{1}, \ldots, \psi-\psi \circ \operatorname{Ad} u_{n}\right) \mid \psi \in V \cap M_{*}\right\}
\end{aligned}
$$

Identifying as usual $\left(M^{n}\right)^{*} \cong\left(M^{*}\right)^{n},\left(\left(M_{*}\right)^{n}\right)^{*} \cong M^{n}$, we conclude that zero belongs to the $\sigma\left(\left(M^{*}\right)^{n+1}, M^{n+1}\right)$-closure of W, because φ is in the $\sigma\left(M^{*}, M\right)$-closure of $V \cap M_{*}$. Zero is of course in $\left(M_{*}\right)^{n+1}$, and since W is a (nonempty) convex subset of $\left(M_{*}\right)^{n+1}$, a separation argument shows that zero is in fact in the norm-closure of W in $\left(M_{*}\right)^{n+1}$. Thus there is a $\psi \in V \cap M_{*}$ such that

$$
\left\|\psi-\psi \circ E_{N}\right\|, \quad\left\|\psi-\psi \circ \operatorname{Ad} u_{i}\right\| \leq \varepsilon, \quad 1 \leq i \leq n
$$

The fact $\psi(f) \geq 1-\varepsilon$ implies that ψ is basically supported on $f M f$, i.e. if we set

$$
\tilde{\psi}(x):=\frac{\psi(f x f)}{\psi(f)}, \quad x \in M
$$

we get a normal state $\tilde{\psi}$ with $\|\psi-\tilde{\psi}\| \leq 3 \varepsilon^{1 / 2}$ (as in [Co1, Lemma 2.4]). Define

$$
\psi^{\prime}(x):=\tilde{\psi}\left(E_{N}(x)\right)
$$

then ψ^{\prime} is a positive normal state with

$$
\left\|\psi-\psi^{\prime}\right\| \leq\left\|(\tilde{\psi}-\psi) \circ E_{N}\right\|+\left\|\psi-\psi \circ E_{N}\right\| \leq 3 \varepsilon^{1 / 2}+\varepsilon
$$

Note that $\psi^{\prime} \circ E_{N}=\psi^{\prime}, \operatorname{supp} \psi^{\prime} \leq f$. Since ψ^{\prime} is positive and normal, there is a unique $\xi \in L^{1}(M, \tau), \xi \geq 0$ with $\psi^{\prime}(x)=\tau(x \xi), x \in M . E_{N}$ extends to a continuous $N-N$-bimodule map from $L^{1}(M, \tau)$ to $L^{1}(N, \tau)$, hence

$$
\begin{aligned}
\tau(x \xi) & =\psi^{\prime}(x)=\psi^{\prime}\left(E_{N}(x)\right)=\tau\left(E_{N}(x) \xi\right) \\
& =\tau\left(E_{N}(x) E_{N}(\xi)\right)=\tau\left(x E_{N}(\xi)\right), \quad \forall x \in M .
\end{aligned}
$$

But this shows that $\xi \in L^{1}(N, \tau)$. Thus $h:=\xi^{1 / 2}$ is in $L^{2}(N, \tau)^{+},\|h\|_{2}=1$, and

$$
\psi^{\prime}(x)=\tau(x \xi)=\omega_{h}(x)=\langle x h, h\rangle .
$$

We have $\operatorname{supp} h \leq f$ and by the Powers-Størmer inequality

$$
\begin{aligned}
\left\|u_{i} h u_{i}^{*}-h\right\|_{2}^{2} & \leq\left\|\psi^{\prime}-\psi^{\prime} \circ \operatorname{Ad} u_{i}\right\| \\
& \leq\left\|\psi^{\prime}-\psi\right\|+\left\|\psi-\psi \circ \operatorname{Ad} u_{i}\right\|+\left\|\left(\psi-\psi^{\prime}\right) \circ \operatorname{Ad} u_{i}\right\| \\
& \leq 9 \varepsilon^{1 / 2}, \quad 1 \leq i \leq n
\end{aligned}
$$

Using Connes' trick [Co1, Theorem 1.2.2], for $\delta=6 n\left(3 \varepsilon^{1 / 4}\right)^{1 / 8}<1$ (i.e. ε small enough), we can find a $t \in \mathbf{R}, \quad t>0$, such that the spectral projection $E_{t}(h) \in N\left(E_{t}(h)\right.$ denotes as usual the spectral projection $\left.\chi_{(t, \infty)}(h)\right)$ is nonzero and satisfies

$$
\left\|E_{t}\left(u_{i} h u_{i}^{*}\right)-E_{t}(h)\right\|_{2} \leq \delta\left\|E_{t}(h)\right\|_{2}, \quad 1 \leq i \leq n
$$

Putting $e=E_{t}(h)$, we get

$$
\left\|\left[u_{i}, e\right]\right\|_{2} \leq \delta\|e\|_{2}
$$

since $E_{t}\left(u_{i} h u_{i}^{*}\right)=u_{i} e u_{i}^{*}, 1 \leq i \leq n$. We have clearly

$$
\tau(e) \leq \tau(\operatorname{supp} h) \leq \tau(f)<\varepsilon,
$$

and $e \in N$ since $h \in L^{2}(N, \tau)$. Q.E.D.
We use the following relative version of [Co1, Lemma 2.6]-the proof is the same.

Lemma 1.3. Let M be a II_{1}-factor, $N \subset M$ a subfactor, ω a free ultrafilter on \mathbf{N}, N^{ω} and M^{ω} the usual ultrapower algebras and u_{1}, \ldots, u_{n} unitary operators in M. Then if the commutant of u_{1}, \ldots, u_{n} in N^{ω} is finite dimensional, we can find unitary operators u_{n+1}, \ldots, u_{q} in M such that the commutant of u_{1}, \ldots, u_{q} in N^{ω} is trivial.

Similar to [Co1, Lemma 2.5], we need the next lemma for the proof of the implication $2^{\circ}\left(\right.$ resp. $\left.2^{\prime \circ}\right) \Rightarrow 1^{\circ}$.

Lemma 1.4. Let $N \subset M_{0} \subset M$ satisfy statement $2^{\prime \circ}$ in Theorem 1.1. Then the reduced algebras $N_{p} \subset p M_{0} p \subset M_{p}$ also satisfy $2^{\prime 0}$, where p denotes a nontrivial projection in N.
Proof. We use Connes' argument: since N is a II_{1}-factor there is a projection $f \in N$ with $f \leq p, \tau(f)=\frac{1}{k}, k \in \mathbf{N}$. It is now easy to construct a type I_{k} subfactor P of N with minimal projection $f . P$ is generated by two unitaries $v_{1}, v_{2} \in N$.

Let $x_{1}, \ldots, x_{n} \in p M_{0} p \subset M_{0}$. Then by hypothesis there is a singular state $\varphi \in M^{*}$ with $\varphi\left(x_{i} x\right)=\varphi\left(x x_{i}\right), \quad 1 \leq i \leq n, \varphi\left(v_{i} x\right)=\varphi\left(x v_{i}\right), i=1,2, \forall x \in$ M, and $\varphi=\varphi \circ E_{N}$. The restriction of φ to M_{p} is the desired singular functional. Q.E.D.

Lemma 1.4 shows in particular that if $N \subset M$ satisfy 2°, then the reduced algebras $N_{p} \subset M_{p}$ also satisfy 2°.

Proof of Theorem 1.1 (see [Co1, Proof of Theorem 2.1]).
We prove the following chain of implications: $1^{\circ} \Rightarrow 4^{\circ} \Rightarrow 3^{\circ} \Rightarrow 2^{\circ} \Rightarrow 1^{\circ}$, $2^{\circ} \Rightarrow 2^{\prime \circ} \Rightarrow 1^{\circ} \Rightarrow 2^{\circ}$.
$1^{\circ} \Rightarrow 4^{\circ}$: The proof of this implication is based on Connes' idea.
$1 .{ }^{\circ}$ implies the existence of a nontrivial central sequence of unitaries $\left(u_{i}\right)_{i \in \mathbf{N}} \subset$ N with $\tau\left(u_{i}\right)=0, i \in \mathbf{N},\left\|\left[x, u_{i}\right]\right\|_{2} \rightarrow 0$ as $i \rightarrow \infty$ for all $x \in M$. Since M is a factor, $C^{*}\left(M, M^{\prime}, e_{N}\right)$ is irreducible and therefore we have either

$$
\mathscr{K}(H) \cap C^{*}\left(M, M^{\prime}, e_{N}\right)=\{0\} \quad \text { or } \quad \mathscr{K}(H) \subset C^{*}\left(M, M^{\prime}, e_{N}\right) .
$$

If 4° does not hold, the one-dimensional projection $\pi: H \mapsto \operatorname{span} \hat{1}, \xi \mapsto$ $\langle\xi, \hat{1}\rangle \hat{1}$, where $\hat{1}$ is as usual the cyclic and separating vector in $L^{2}(M, \tau)$, is contained in $C^{*}\left(M, M^{\prime}, e_{N}\right)$. Hence there are words $a_{1}^{(1)} \cdots a_{n_{1}}^{(1)}, \ldots, a_{1}^{(k)} \ldots$ $a_{n_{k}}^{(k)} \in C^{*}\left(M, M^{\prime}, e_{N}\right)$ with $a_{i}^{(j)} \in M \cup M^{\prime} \cup\left\{e_{N}\right\}$ such that

$$
\begin{equation*}
\left\|\pi-\sum_{i=1}^{k} a_{1}^{(i)} \cdots a_{n_{i}}^{(i)}\right\|<\frac{\varepsilon}{2} . \tag{1}
\end{equation*}
$$

The elements in M commute with those in M^{\prime}, but not necessarily with e_{N}. We suppose that every word is written in a form where all the elements in M that occur in the word are moved as far to the left as possible. Note that u_{i} commutes with M^{\prime} and e_{N}. We can assume that every word contains an element in M (otherwise the process described below is not necessary). Let $a_{s_{i}}^{(i)}$ denote the first element of M that occurs in the word $a_{1}^{(i)} \cdots a_{n_{i}}^{(i)}$ (from left to right); then

$$
\left\|\sum_{i=1}^{k} a_{1}^{(i)} \cdots\left[a_{s_{i}}^{(i)}, u_{j}\right] a_{s_{i}+1}^{(i)} \cdots a_{n_{i}}^{(i)} \hat{1}\right\|_{2} \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

i.e.

$$
\left\|\sum_{i=1}^{k} a_{1}^{(i)} \cdots a_{s_{i}}^{(i)} u_{j} a_{s_{i}+1}^{(i)} \cdots a_{n_{i}}^{(i)} \hat{1}-u_{j} \sum_{i=1}^{k} a_{1}^{(i)} \cdots a_{n_{i}}^{(i)} \hat{1}\right\|_{2} \rightarrow 0 \quad \text { as } j \rightarrow \infty,
$$

which implies that

$$
\begin{equation*}
\left\|\sum_{i=1}^{k} a_{1}^{(i)} \cdots a_{s_{i}}^{(i)} u_{j} a_{s_{i}+1}^{(i)} \cdots a_{n_{i}}^{(i)} \hat{1}\right\|_{2} \rightarrow\left\|\sum_{i=1}^{k} a_{1}^{(i)} \cdots a_{n_{i}}^{(i)} \hat{1}\right\|_{2} \quad \text { as } j \rightarrow \infty . \tag{2}
\end{equation*}
$$

(1) shows that

$$
1-\frac{\varepsilon}{2} \leq\left\|\sum_{i=1}^{k} a_{1}^{(i)} \cdots a_{n_{i}}^{(i)} \hat{i}\right\|_{2} \leq 1+\frac{\varepsilon}{2} .
$$

This together with (2) implies that we can fix a $j_{0} \geq 1$ such that

$$
\left\|\sum_{i=1}^{k} a_{1}^{(i)} \cdots a_{s_{i}}^{(i)} u_{j} a_{s_{i}+1}^{(i)} \cdots a_{n_{i}}^{(i)} \hat{1}\right\|_{2} \geq 1-\varepsilon, \quad \forall j \geq j_{0} .
$$

The idea is now to move u_{j} through the word to the right. u_{j} commutes with all $a_{s_{i}}^{(i)}, \quad a_{s_{i}+1}^{(i)}, \ldots$ until it hits the next element $a_{r_{i}}^{(i)}$ in M. Then we repeat the process described above, and we can find an index j_{1} such that for all $j \geq j_{1} \geq j_{0}$, we have

$$
\left\|\sum_{i=1}^{k} a_{1}^{(i)} \cdots a_{r_{i}}^{(i)} u_{j} a_{r_{i}+1}^{(i)} \cdots a_{n_{i}}^{(i)} \hat{1}\right\|_{2} \geq 1-\varepsilon-\frac{\varepsilon}{2} .
$$

This procedure stops after at most $n=\max \left\{n_{1}, \ldots, n_{k}\right\}$ steps, so we get an index $j_{n} \geq 1$ such that for all $j \geq j_{n}$, we have

$$
\begin{equation*}
\left\|\sum_{i=1}^{k} a_{1}^{(i)} \cdots a_{n_{i}}^{(i)} u_{j} \hat{1}\right\|_{2} \geq 1-\varepsilon \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}>\varepsilon \tag{3}
\end{equation*}
$$

if $0<\varepsilon<\frac{1}{3}$. On the other hand we get from (1)

$$
\frac{\varepsilon}{2}>\left\|\pi\left(\hat{u}_{j}\right)-\sum_{i=1}^{k} a_{1}^{(i)} \cdots a_{n_{i}}^{(i)} u_{j} \hat{1}\right\|_{2}=\left\|\sum_{i=1}^{k} a_{1}^{(i)} \cdots a_{n_{i}}^{(i)} u_{j} \hat{1}\right\|_{2},
$$

which contradicts (3) for all $j \geq j_{n}$. This shows that $C^{*}\left(M, M^{\prime}, e_{N}\right)$ cannot contain any nonzero compact operator.
$4^{\circ} \Rightarrow 3^{\circ}$: Suppose 3° does not hold. This implies that there are unitaries u_{1}, \ldots, u_{n} in M such that there is no sequence $\left(\xi_{k}\right)_{k \in \mathbf{N}} \subset L^{2}(N, \tau),\left\langle\xi_{k}, \hat{1}\right\rangle$ $=0,\left\|\xi_{k}\right\|_{2}=1$ with $\left\|\left(u_{i}-J u_{i}^{*} J\right) \xi_{k}\right\|_{2} \rightarrow 0,1 \leq i \leq n$.

We show that $C^{*}\left(M, M^{\prime}, e_{N}\right)$ must contain the orthogonal projection from $L^{2}(M, \tau)$ onto $\mathbf{C} \hat{1}$. Consider

$$
T:=\sum_{i=1}^{n} e_{N} u_{i} J u_{i} J e_{N}
$$

Then $T \in C^{*}\left(M, M^{\prime}, e_{N}\right)$ and adjoining $u_{i}^{*}, 1 \leq i \leq n$, to the u_{1}, \ldots, u_{n} if necessary, we may assume T is selfadjoint. Then $\|T\|=n$ and $T \hat{1}=$ $n \hat{1} . T-n \cdot 1$ is invertible as an operator from the complement of $\hat{1}$ in $L^{2}(N, \tau)$ into itself. Indeed, because if we assume $T-n \cdot 1$ is not invertible, then there is a sequence $\left(\xi_{k}\right)_{k \in \mathbf{N}} \subset L^{2}(N, \tau),\left\langle\xi_{k}, \hat{1}\right\rangle=0,\left\|\xi_{k}\right\|_{2}=1$ with

$$
\left\|(T-n 1) \xi_{k}\right\|_{2} \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

This would imply $\left\|T \xi_{k}\right\|_{2} \rightarrow n$. But

$$
\left\|T \xi_{k}\right\|_{2} \leq\left\|\sum_{i=1}^{n} u_{i} J u_{i} J \xi_{k}\right\|_{2} \leq n
$$

and hence $\left\|\sum_{i=1}^{n} u_{i} J u_{i} J \xi_{k}\right\|_{2} \rightarrow n$. The strict convexity of $L^{2}(M, \tau)$ implies then that $\left\|\left(u_{i}-J u_{i}^{*} J\right) \xi_{k}\right\|_{2} \rightarrow 0,1 \leq i \leq n$, which contradicts the choice of the u_{1}, \ldots, u_{n}. Therefore $T-n \cdot 1$ is invertible on the orthogonal complement of $\mathbf{C} \hat{1}$ in $L^{2}(N, \tau)$, hence n is an isolated simple point of the spectrum of T, so the corresponding spectral projection is one-dimensional and in $C^{*}\left(M, M^{\prime}, e_{N}\right)$, which contradicts 4°.
$\underline{3}^{\circ} \Rightarrow 2^{\circ}$: Given u_{1}, \ldots, u_{n} unitaries in M, we want to show that there is a nonnormal state $\varphi \in M^{*}$ with $\varphi \circ \operatorname{Ad} u_{i}=\varphi, 1 \leq i \leq n, \varphi \circ E_{N}=\varphi$. The proof is the same as Connes', but for the convenience of the reader we briefly sketch the argument. Fix a free ultrafilter ω of \mathbf{N}. By Lemma 1.3 we only have to consider the following two cases:
(a) $\left\{u_{1}, \ldots, u_{n}\right\}^{\prime} \cap N^{\omega}=\mathbf{C}$. Let $\left(\xi_{k}\right)_{k \in \mathbf{N}} \subset L^{2}(N, \tau)$ be as in 3°, i.e. $\left\|\xi_{k}\right\|_{2}=1,\left\langle\xi_{k}, \hat{1}\right\rangle=0, k \in \mathbf{N},\left\|\left[u_{i}, \xi_{k}\right]\right\|_{2} \rightarrow 0$ as $k \rightarrow \infty, 1 \leq i \leq n$. As in [Col], using the hypothesis on the relative commutant, there is an $\varepsilon>0$ and a subsequence $\left(\eta_{k}\right)_{k \in \mathbf{N}}$ of the sequence $\left(\xi_{k}\right)_{k \in \mathbf{N}}$ such that $\tau\left(E_{k}\left(\left|\eta_{k}\right|^{2}\right)\left|\eta_{k}\right|^{2}\right) \geq \varepsilon$ for all $k \in \mathbf{N}$. Put $\varphi_{k}=\tau\left(\cdot\left|\eta_{k}\right|^{2}\right)$ and $e_{k}=E_{k}\left(\left|\eta_{k}\right|^{2}\right)$. The φ_{k} are states on M with $\varphi_{k} \circ E_{N}=\varphi_{k}\left(\right.$ since $\left.\eta_{k} \in L^{2}(N, \tau)\right)$ and $\left\|\left[\varphi_{k}, u_{i}\right]\right\| \rightarrow 0$ as $k \rightarrow \infty, 1 \leq i \leq n$. Akemann's theorem [Ak, Theorem 2.3] shows that $\left(\varphi_{k}\right)_{k \in \mathbf{N}}$ is not weakly relatively compact in M_{*} since $\varphi_{k}\left(e_{k}\right) \geq \varepsilon$ for all $k \in \mathbf{N}$, but $e_{k} \rightarrow 0$ strongly. Any nonnormal φ in the weak closure of $\left\{\varphi_{k}\right\}_{k \in \mathbf{N}}$ in M^{*} will do.
(b) $\left\{u_{1}, \ldots, u_{n}\right\}^{\prime} \cap N^{\omega}$ is infinite-dimensional. Thus this commutant contains an infinite-dimensional abelian von Neumann subalgebra and hence contains nonzero projections e_{k} with $\tau_{\omega}\left(e_{k}\right) \leq \frac{1}{k}, k \in \mathbf{N}$. Each e_{k} is represented by a sequence of projections $\left(f_{k}\right)_{k \in \mathbf{N}} \subset N$ with $f_{k} \neq 0, \tau\left(f_{k}\right) \leq$ $\frac{1}{k},\left\|\left[u_{i}, f_{k}\right]\right\|_{2} \leq \frac{1}{k}\left\|f_{k}\right\|_{2} \quad \forall i, k$. Let $\varphi_{k}=\tau\left(\cdot \frac{f_{k}}{\tau\left(f_{k}\right)}\right)$; then as in (a) we have $\varphi_{k}=\varphi_{k} \circ E_{N}$, and we can find a weak limit of the φ_{k} with the desired properties.
$\underline{2}^{\circ} \Rightarrow 1^{\circ}$: We prove this implication using a maximality argument, slightly different from the one in [Co1], similar to the ones in [CoFW and Po2]. Let
u_{1}, \ldots, u_{n} be unitaries in M and $\varepsilon>0$. Consider
$R:=\{f \mid f$ projection in N such that:

$$
\begin{aligned}
& \text { (1) } \tau(f) \leq \frac{1}{2} \text { and } \\
& \text { (2) } \left.\left\|(1-f) u_{i} f-f u_{i}(1-f)\right\|_{2} \leq \varepsilon\|f\|_{2}, \quad 1 \leq i \leq n\right\} \text {. }
\end{aligned}
$$

R is clearly inductively ordered and nonempty, so we can take a maximal element $f \in R$. We show that $\tau(f)=\frac{1}{2}$. If not, there is a $\delta>0$ with $\tau(f)+\delta \leq$ $\frac{1}{2}(\delta<\varepsilon)$. Lemmas 1.4 and 1.2 applied to $N_{1-f} \subset M_{1-f},(1-f) u_{i}(1-f)$, $1 \leq i \leq n$, and $\delta>0$, give a nonzero projection $e \in N_{1-f}$ with $\tau(e) \leq \delta$ and

$$
\left\|\left[(1-f) u_{i}(1-f), e\right]\right\|_{2} \leq \delta\|e\|_{2}, \quad 1 \leq i \leq n
$$

Put $f_{0}:=f+e$, which is a projection in N, strictly larger than f, and satisfies $\tau\left(f_{0}\right) \leq \tau(f)+\delta \leq \frac{1}{2}$. We compute

$$
\begin{aligned}
\left\|\left[u_{i}, f_{0}\right]\right\|_{2}^{2} & =\left\|(1-f-e) u_{i} f-f u_{i}(1-f-e)+(1-f) u_{i} e-e u_{i}(1-f)\right\|_{2}^{2}, \\
& =\left\|(1-f-e) u_{i} f-f u_{i}(1-f-e)\right\|_{2}^{2}+\left\|\left[(1-f) u_{i}(1-f), e\right]\right\|_{2}^{2}, \\
& \leq\left\|(1-f) u_{i} f-f u_{i}(1-f)\right\|_{2}^{2}+\left\|\left[(1-f) u_{i}(1-f), e\right]\right\|_{2}^{2}, \\
& =\varepsilon^{2}\|f\|_{2}^{2}+\delta^{2}\|e\|_{2}^{2} \leq \varepsilon^{2}\|f+e\|_{2}^{2}=\varepsilon^{2}\left\|f_{0}\right\|_{2}^{2} .
\end{aligned}
$$

Therefore

$$
\left\|\left(1-f_{0}\right) u_{i} f_{0}-f_{0} u_{i}\left(1-f_{0}\right)\right\|_{2} \leq \varepsilon\left\|f_{0}\right\|_{2}, \quad 1 \leq i \leq n
$$

which contradicts the maximality of f.
Put $u:=2(1-f)-1$, then $\tau(u)=0, u$ is a unitary in N and $\left\|\left[u_{i}, u\right]\right\|_{2} \leq$ $2 \cdot \frac{\varepsilon}{2}=\varepsilon, 1 \leq i \leq n$.
$\underline{2}^{\circ} \Leftrightarrow 2^{\prime \circ}: 2^{\circ} \Rightarrow 2^{\prime \circ}$ is trivial. Conversely, we show $2^{\prime \circ} \Rightarrow 1^{\circ}$, which is equivalent to 2°. Using Lemma 1.4 and Lemma 1.2 , the same maximality argument used above works, because the projections in the set R are in N and N is contained in M_{0}. We get therefore statement 1° with M_{0} in place of M. This is clearly enough to show 1° since u is bounded. Q.E.D.

2. Applications to crossed products

Throughout this section N denotes a separable II_{1}-factor and G a countable (discrete) amenable group acting freely on N via $\sigma: G \mapsto$ Aut N. Applying Theorem 1.1 to the pair of factors $N \subset N \times{ }_{\sigma} G$, we get a simple proof of the following result due to Bédos [Be, Theorem A]:
Theorem 2.1. Let N be a separable II_{1}-factor with property Γ and G an amenable group acting freely on N via some action σ. Then given any $x_{1}, \ldots, x_{n} \in$ $N \times{ }_{\sigma} G$ and $\varepsilon>0$, there is a unitary $u \in N$ with $\tau(u)=0$ and $\left\|\left[u, x_{i}\right]\right\|_{2}<\varepsilon$ for all $i=1, \ldots, n$. In particular, there are nontrivial central sequences of $N \times_{\sigma} G$ contained in N and $N \times_{\sigma} G$ has property Γ.
Proof. Let $M:=N \times_{\sigma} G$ and denote by u_{g} the unitaries implementing the action of G on N, i.e. $u_{g} x u_{g}^{*}=\sigma_{g}(x), x \in N$. Set $M_{0}:=\left\{\sum_{\text {finite }} x_{g} u_{g}, x_{g} \in\right.$ $N\}$; then with $N \subset M_{0} \subset M$ we are in the situation of statement $2^{\prime 0}$ of

Theorem 1.1. Given unitaries $u_{1}, \ldots, u_{n} \in N$ and $u_{g_{1}}, \ldots, u_{g_{k}}$, we have to construct a nonnormal state $\varphi \in M^{*}$ with $\varphi\left(x u_{i}\right)=\varphi\left(u_{i} x\right), \varphi\left(x u_{g_{j}}\right)=$ $\varphi\left(u_{g_{j}} x\right), \forall x \in M, \forall i, j$ and $\varphi \circ E_{N}=\varphi$.

Let $\left(F_{n}\right)_{n \in \mathbf{N}}$ be an increasing sequence of finite subset of G with $\bigcup_{n=1}^{\infty} F_{n}=$ G. Since G is amenable, given F_{n} and $\varepsilon_{n}>0$, there is a finite set $K_{n} \subset G$ with $\left|K_{n} F_{n} \backslash K_{n}\right|<\varepsilon_{n}\left|K_{n}\right|$. We choose $\varepsilon_{n} \searrow 0$. Given $u_{1}, \ldots, u_{n}, \sigma_{g}\left(u_{i}\right)$, $g \in K_{j}, \quad 1 \leq i \leq n$, unitaries in N, there is a singular state $\varphi_{j} \in N^{*}$ which is invariant under these unitaries [Co1, Theorem 2.1]. We put

$$
\varphi_{K_{j}}(x)=\frac{1}{\left|K_{j}\right|} \sum_{g \in K_{j}} \varphi_{j} \circ E_{N}\left(u_{g} x u_{g}^{*}\right), \quad x \in M
$$

By construction we have $\varphi_{K_{j}}\left(x u_{i}\right)=\varphi_{K_{j}}\left(u_{i} x\right), \forall x \in M, 1 \leq i \leq n$, and the $\varphi_{K_{j}}$ are clearly singular states on M which factor through E_{N}. The choice of the sets $\left(K_{n}\right)_{n \in \mathbf{N}}$ implies that

$$
\left\|\left[\varphi_{K_{j}}, u_{g}\right]\right\| \rightarrow 0 \quad \text { as } j \rightarrow \infty, \quad \forall g \in G
$$

Let φ be a $\sigma\left(M^{*}, M\right)$-limit point of $\left\{\varphi_{K_{j}}\right\}_{j \in \mathbf{N}}$; then by [Ta2, Chapter III, Proposition 5.8] φ is still singular and has, by the construction of the $\varphi_{K_{j}}$, the desired invariance properties. Applying 2° of Theorem 1.1 gives the result. Q.E.D.

We also mention here a remark, essentially showing that the set of subfactors of a given II_{1}-factor M, that contain a fixed subfactor N and have nontrivial central sequences in N, is inductively ordered.
Proposition 2.2. Let N, M_{n}, M be II_{1}-factors with M separable such that $N \subset M_{n} \subset M$ for all $n \in \mathbf{N}$ and $M_{n} \nearrow M$ (i.e. ${\overline{\bigcup_{n=1}^{\infty} M_{n}}}^{w}=M$). If there are nontrivial central sequences for M_{n} contained in N for all $n \in \mathbf{N}$, then there are nontrivial central sequences for M contained in N.
Proof. The hypothesis imply that 1° of Theorem 1.1 holds for all pairs $N \subset$ $M_{n}, n \in \mathbf{N}$. We will check condition 1° for $N \subset M$. Given $x_{1}, \ldots, x_{n} \in M$ and $\varepsilon>0$, there is an $n_{0} \geq 1$ and $x_{1}^{0}, \ldots, x_{n}^{0} \in M_{n_{0}}$ such that $\left\|x_{i}-x_{i}^{0}\right\|_{2}<\frac{\varepsilon}{2}$, $1 \leq i \leq n$. But for $x_{1}^{0}, \ldots, x_{n}^{0}$ there is a unitary $u \in N$ with $\tau(u)=0$ and $\left\|\left[x_{i}^{0}, u\right]\right\|_{2}<\frac{\varepsilon}{2}$, thus $\left\|\left[x_{i}, u\right]\right\|_{2}<\varepsilon, \quad 1 \leq i \leq n$. Q.E.D.

3. A relative Mc Duff-type theorem

Mc Duff considers in [McD] separable II_{1}-factors M which are isomorphic to $M \bar{\otimes} R, R$ the hyperfinite II_{1}-factor. This property is stronger than property Γ and is in fact equivalent to the noncommutativity of the algebra $M^{\prime} \cap M^{\omega}, \omega$ a free ultrafilter in \mathbf{N}. Using Mc Duff's methods we prove a relative version of her theorem for a pair of (separable) II_{1}-factors $N \subset M$. The theorem gives a necessary and sufficient condition implying that the pair $N \subset M$ is isomorphic to the pair $N \bar{\otimes} R \subset M \bar{\otimes} R$.

Theorem 3.1. Let M be a separable II_{1}-factor with subfactor $N \subset M$. Then the following conditions are equivalent:
1°. Given $x_{1}, \ldots, x_{n} \in M$ and $\varepsilon>0$, there is a I_{2}-subfactor $M_{2 \times 2}$ in N with matrix units $\left\{e_{i j}\right\}_{1 \leq i, j \leq 2}$ such that

$$
\left\|\left[e_{i j}, x_{k}\right]\right\|_{2}<\varepsilon, \quad 1 \leq k \leq n, \quad 1 \leq i, j \leq 2
$$

$2^{\circ} . N \subset M \cong N \bar{\otimes} R \subset M \bar{\otimes} R$, i.e. there is an isomorphism $\Phi: M \mapsto M \bar{\otimes} R$ (onto) with $\Phi(N)=N \bar{\otimes} R$.
$3^{\circ} . M^{\prime} \cap N^{\omega}$ is noncommutative, where ω is a free ultrafilter in \mathbf{N}.
Since the proof follows closely Mc Duff's ideas, we avoid details where our proof coincides with Mc Duff's.

Proof. We show $1^{\circ} \Leftrightarrow 2^{\circ}$ and $1^{\circ} \Leftrightarrow 3^{\circ}$.
$1^{\circ} \Rightarrow 2^{\circ}$: In Lemmas 3.2 and 3.3 below we prove two results similar to [McD, Theorems 1, 2]. The proofs are essentially the ones given by Mc Duff adapted to the situation $N \subset M$.

Lemma 3.2. Let $\left(M_{k}\right)_{k=1}^{\infty}$ be a sequence of I_{2}-subfactors of N with matrix units $\left\{e_{i j}^{k}\right\}$ such that
(i) M_{j} commutes with $M_{k}, j \neq k$.
(ii) $\left(e_{i j}^{k}\right)_{k=1}^{\infty}$ is a central sequence in M for all (i, j) fixed.

Then there is a hyperfinite II_{1}-factor $R \subset N$ with

$$
N \cong R \bar{\otimes}\left(R^{\prime} \cap N\right), \quad M \cong R \bar{\otimes}\left(R^{\prime} \cap M\right)
$$

and thus $N \subset M \cong N \bar{\otimes} R \subset M \bar{\otimes} R$.
Proof. We use the following well-known fact: If $K \subset M$ is a I_{k}-subfactor, then

$$
\begin{equation*}
\left\|x-E_{K^{\prime} \cap M}(x)\right\|_{2} \leq k^{\frac{3}{2}} \sup _{1 \leq i, j \leq k}\left\|\left[e_{i j}, x\right]\right\|_{2} \tag{4}
\end{equation*}
$$

where $\left\{e_{i j}\right\}_{1 \leq i, j \leq k}$ are matrix units in K and $E_{K^{\prime} \cap M}$ is the conditional expectation $M \mapsto K^{\prime} \cap M$.

Let $\left(x_{n}\right)_{n=1}^{\infty}\left(\operatorname{resp} .\left(y_{n}\right)_{n=1}^{\infty}\right)$ be a $\|\cdot\|_{2}$-dense sequence in M (resp. N). Using (4) and (ii) of the hypothesis, we can find for given $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}$ and $\varepsilon=2^{-k}$ a matrix-algebra $M_{n_{k}} \in\left\{M_{k}, k=1,2, \ldots\right\}$ such that

$$
\begin{equation*}
\left\|x_{i}-E_{M_{n_{k}}^{\prime} \cap M}\left(x_{i}\right)\right\|_{2}, \quad\left\|y_{i}-E_{M_{n_{k}}^{\prime} \cap N}\left(y_{i}\right)\right\|_{2}<2^{-k}, \quad 1 \leq i \leq k . \tag{5}
\end{equation*}
$$

Notice that $M_{n_{k}} \subset N$. This provides a subsequence $\left\{M_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{M_{k}\right\}_{k=1}^{\infty}$ and we set

$$
R:=\bar{\bigotimes}_{k=1}^{\infty} M_{n_{k}}
$$

R splits M and N simultaneously. For this it is enough to show that $x_{i} \in$ $\left(R \cup\left(R^{\prime} \cap M\right)\right)^{\prime \prime}\left(\right.$ resp. $\left.y_{i} \in\left(R \cup\left(R^{\prime} \cap N\right)\right)^{\prime \prime}\right)$ for all $i \in \mathbf{N}$. Similar to [McD,
inequality (7)], we get

$$
\begin{equation*}
\left\|x-E_{\left(\otimes_{i=n+1}^{\infty} M_{n_{i}}\right)^{\prime} \cap M}(x)\right\|_{2} \leq \sum_{i=n+1}^{\infty}\left\|x-E_{M_{n_{i}}^{\prime} \cap M}(x)\right\|_{2}, \quad x \in M, n \in \mathbf{N} . \tag{6}
\end{equation*}
$$

So if we fix $x_{i_{0}}$ and $y_{i_{0}}$, we get from (6) using (5) for $n>i_{0}, j_{0}$:

$$
\left\|x_{i_{0}}-E_{\left(\otimes_{i=n+1}^{\infty} M_{n_{i}}\right)^{\prime} \cap M}\left(x_{i_{0}}\right)\right\|_{2} \leq \sum_{i=n+1}^{\infty} 2^{-i} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

and similarly for $y_{i_{0}}$. But $E_{\left(\otimes_{i=n+1}^{\infty} M_{n_{i}}{ }^{\prime} \cap M\right.}\left(x_{i_{0}}\right)$ (resp. $E_{\left(\otimes_{i=n+1}^{\infty} M_{n_{i}}\right)^{\prime} \cap N}\left(y_{i_{0}}\right)$) is contained in $\left(\bigotimes_{i=1}^{n} M_{n_{i}} \cup\left(R^{\prime} \cap M\right)\right)^{\prime \prime}\left(\right.$ resp. $\left.\left(\bigotimes_{i=1}^{n} M_{n_{i}} \cup\left(R^{\prime} \cap N\right)\right)^{\prime \prime}\right)$, which shows that $N \cong R \bar{\otimes}\left(R^{\prime} \cap N\right), M \cong R \bar{\otimes}\left(R^{\prime} \cap M\right)$. Analyzing these standard isomorphisms, we get the desired result, since $R \cong R \bar{\otimes} R$. This ends the proof of Lemma 3.2.

As in [McD, Theorem 2], we need a second lemma, which will prove the implication $1^{\circ} \Rightarrow 2^{\circ}$ together with Lemma 3.2.
Lemma 3.3. Let $\left(M_{k}\right)_{k=1}^{\infty}$ be a sequence of I_{2}-subfactors of N with matrix units $\left\{e_{i j}^{k}\right\}$ forming central sequences in M. Then there is a sequence $\left(N_{k}\right)_{k=1}^{\infty}$ of mutually commuting I_{2}-subfactors in N with matrix units $\left\{g_{i j}^{k}\right\}$, which also form central sequences in M.
Proof. Mc Duff's proof of Theorem 2 in [McD] applies completely; her construction never leaves N.

This ends the proof of $1^{\circ} \Rightarrow 2^{\circ}$.
$\underline{2}^{\circ} \Rightarrow 1^{\circ}$: The desired I_{2}-subfactor can be constructed in R and then transported to N via the given isomorphism.
$\underline{1}^{\circ} \Rightarrow 3^{\circ}$: Using the separability of N we obtain a sequence of I_{2}-subfactors of N with matrix units $\left\{e_{i j}^{k}\right\}$ such that

$$
\left\|\left[x, e_{i j}^{k}\right]\right\|_{2} \rightarrow 0 \quad \text { as } k \rightarrow \infty, \quad \forall x \in M,(i, j) \text { fixed }
$$

But then $\left(e_{12}^{n}\right)\left(e_{21}^{n}\right) \neq\left(e_{21}^{n}\right)\left(e_{12}^{n}\right)$ and the elements $\left(e_{12}^{n}\right)$ and $\left(e_{21}^{n}\right)$ are nontrivial in N^{ω}.
$3^{\circ} \Rightarrow 1^{\circ}$: The argument is the same as Mc Duff's. For the sake of completeness we recall briefly the steps.

Let $I_{0}=\left\{\left(x_{n}\right) \in l^{\infty}(\mathbf{N}, M) \mid \lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{2}=0\right\}, N^{0}=l^{\infty}(\mathbf{N}, M) / I_{0}$. It is easy to see that $M^{\prime} \cap N^{\omega}$ is commutative iff $M^{\prime} \cap N^{0}$ is commutative. Then one shows that if $M^{\prime} \cap N^{\omega}$ is noncommutative, there are no abelian projections in $M^{\prime} \cap N^{\omega}$, i.e. $M^{\prime} \cap N^{\omega}$ is continuous and contains therefore a I_{2}-subfactor. This proves 1°, since whenever we have matrix units $\left\{e_{i j}\right\}_{1 \leq i, j \leq 2}$ in $M^{\prime} \cap N^{\omega}$, they lift to matrix units $\left\{e_{i j}^{k}\right\}_{1 \leq i, j \leq 2}$ in N with $\left\{e_{i j}^{k}\right\}_{k=1}^{\infty} \in e_{i j}$. In particular we have that $\lim _{k \rightarrow \omega}\left\|\left[e_{i j}^{k}, x\right]\right\|_{2}=0,(i, j)$ fixed, $x \in M$, which implies 1°.

To prove the result about the nonexistence of abelian projections in a noncommutative algebra $M^{\prime} \cap N^{\omega}$, we take a dense sequence $\left(x_{k}\right)_{k=1}^{\infty}$ in $(M)_{1}$ and put

$$
N_{k}=\left\{x \in(N)_{1} \mid\left\|\left[x, x_{i}\right]\right\|_{2}<1 / k, 1 \leq i \leq k\right\} .
$$

As in [McD, Lemma 6], we get the following result:
Suppose $M^{\prime} \cap N^{0}$ is noncommutative. Let $f \in N_{3 k}$ be a projection of trace $\lambda \neq 0$. Then there is an $\alpha(\lambda)>0$ and $y, z \in N_{k}$ such that $y=f y f, z=f z f$ and $\|[y, z]\|_{2}>\alpha(\lambda)$. Moreover, $\alpha(\lambda)$ is independent of k .

This completes the proof of the theorem. Q.E.D.

References

[Ak] C. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc. 126 (1967), 286-302.
[Be] E. Bédos, On actions of amenable groups on II_{1}-factors, Preprint 1988.
[Col] A. Connes, Classification of injective factors, Cases $\mathrm{II}_{1}, \mathrm{II}_{\infty}, \mathrm{III}_{\lambda}, \lambda \neq 1$, Ann. of Math. 104 (1976), 73-115.
[Co2] , Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. 8 (1975), 383-420.
[CoFW] A. Connes, J. Feldman and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynamical Systems 1 (1981), 431-450.
[Jo] V. F. R. Jones, Index of subfactors, Invent. Math. 72 (1983), 1-25.
[Oc] A. Ocneanu, Quantized group string algebras and Galois theory for algebras, preprint.
[Po1] S. Popa, A short proof of "Injectivity implies Hyperfiniteness" for finite von NeumannAlgebras, J. Operations Theory 16 (1986), 261-272.
[Po2] _, Maximal injective subalgebras in factors associated with free groups, Adv. in Math. 50 (1983), 27-48.
[Po3] __, Classification of subfactors: reduction to commuting squares, Invent. Math. (to appear).
[McD] D. McDuff, Central sequences and the hyperfinite factor, Proc. London Math. Soc. (3) 21 (1970), 443-461.
[MvN] F. Murray and J. von Neumann, Rings of operators IV, Ann. of Math. 44 (1943), 716-808.
[Ta1] M. Takesaki, On the singularity of a positive linear functional, Proc. Japan Acad. $\mathbf{3 5}$ (1959), 365-366.
[Ta2] _, Theory of operator algebras I, Springer, Berlin, Heidelberg, and New York, 1979.
Department of Mathematics, University of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90024-1555

[^0]: Received by the editors June 7, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 46L35; Secondary 46L10.

