On the existence of central sequences in subfactors
HTML articles powered by AMS MathViewer
- by Dietmar H. Bisch
- Trans. Amer. Math. Soc. 321 (1990), 117-128
- DOI: https://doi.org/10.1090/S0002-9947-1990-1005075-5
- PDF | Request permission
Abstract:
We prove a relative version of [Co1, Theorem 2.1] for a pair of type ${\text {I}}{{\text {I}}_1}$-factors $N \subset M$. This gives a list of necessary and sufficient conditions for the existence of nontrivial central sequences of $M$ contained in the subfactor $N$. As an immediate application we obtain a result by Bédos [Be, Theorem A], showing that if $N$ has property $\Gamma$ and $G$ is an amenable group acting freely on $N$ via some action $\sigma$, then the crossed product $N{ \times _\sigma }G$ has property $\Gamma$. We also include a proof of a relative Mc Duff-type theorem (see [McD, Theorems $1$, $2$ and $3$]), which gives necessary and sufficient conditions implying that the pair $N \subset M$ is stable.References
- Charles A. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc. 126 (1967), 286–302. MR 206732, DOI 10.1090/S0002-9947-1967-0206732-8 E. Bédos, On actions of amenable groups on ${\text {I}}{{\text {I}}_1}$-factors, Preprint 1988.
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057
- Alain Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 3, 383–419. MR 394228
- A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), no. 4, 431–450 (1982). MR 662736, DOI 10.1017/s014338570000136x
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127
- Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 119–172. MR 996454
- Sorin Popa, A short proof of “injectivity implies hyperfiniteness” for finite von Neumann algebras, J. Operator Theory 16 (1986), no. 2, 261–272. MR 860346
- Sorin Popa, Maximal injective subalgebras in factors associated with free groups, Adv. in Math. 50 (1983), no. 1, 27–48. MR 720738, DOI 10.1016/0001-8708(83)90033-6
- S. Popa, Classification of subfactors: the reduction to commuting squares, Invent. Math. 101 (1990), no. 1, 19–43. MR 1055708, DOI 10.1007/BF01231494
- Dusa McDuff, Central sequences and the hyperfinite factor, Proc. London Math. Soc. (3) 21 (1970), 443–461. MR 281018, DOI 10.1112/plms/s3-21.3.443
- F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 9096, DOI 10.2307/1969107
- Masamichi Takesaki, On the singularity of a positive linear functional on operator algebra, Proc. Japan Acad. 35 (1959), 365–366. MR 113153
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728 E. Bédos, On actions of amenable groups on ${\text {I}}{{\text {I}}_1}$-factors, Preprint 1988.
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057
- Alain Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 3, 383–419. MR 394228
- A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), no. 4, 431–450 (1982). MR 662736, DOI 10.1017/s014338570000136x
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127
- Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 119–172. MR 996454
- Sorin Popa, A short proof of “injectivity implies hyperfiniteness” for finite von Neumann algebras, J. Operator Theory 16 (1986), no. 2, 261–272. MR 860346
- Sorin Popa, Maximal injective subalgebras in factors associated with free groups, Adv. in Math. 50 (1983), no. 1, 27–48. MR 720738, DOI 10.1016/0001-8708(83)90033-6
- S. Popa, Classification of subfactors: the reduction to commuting squares, Invent. Math. 101 (1990), no. 1, 19–43. MR 1055708, DOI 10.1007/BF01231494
- Dusa McDuff, Central sequences and the hyperfinite factor, Proc. London Math. Soc. (3) 21 (1970), 443–461. MR 281018, DOI 10.1112/plms/s3-21.3.443
- F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 9096, DOI 10.2307/1969107
- Masamichi Takesaki, On the singularity of a positive linear functional on operator algebra, Proc. Japan Acad. 35 (1959), 365–366. MR 113153
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 321 (1990), 117-128
- MSC: Primary 46L35
- DOI: https://doi.org/10.1090/S0002-9947-1990-1005075-5
- MathSciNet review: 1005075