Gel′fer functions, integral means, bounded mean oscillation, and univalency
HTML articles powered by AMS MathViewer
- by Shinji Yamashita
- Trans. Amer. Math. Soc. 321 (1990), 245-259
- DOI: https://doi.org/10.1090/S0002-9947-1990-1010891-X
- PDF | Request permission
Abstract:
A Gelfer function $f$ is a holomorphic function in $D = \{ \left | z \right | < 1\}$ such that $f(0) = 1$ and $f(z) \ne - f(w)$ for all $z$, $w$ in $D$. The family $G$ of Gelfer functions contains the family $P$ of holomorphic functions $f$ in $D$ with $f(0) = 1$ and Re $f > 0$ in $D$. If $f$ is holomorphic in $D$ and if the ${L^2}$ mean of $f’$ on the circle $\{ \left | z \right | = r\}$ is dominated by that of a function of $G$ as $r \to 1 - 0$, then $f \in BMOA$. This has two recent and seemingly different results as corollaries. A core of the proof is the fact that ${\operatorname {log}}f \in BMOA$ if $f \in G$. Besides the properties obtained concerning $f \in G$ itself, we shall investigate some families of functions where the roles played by $P$ in Univalent Function Theory are replaced by those of $G$. Some exact estimates are obtained.References
- Albert Baernstein II, Univalence and bounded mean oscillation, Michigan Math. J. 23 (1976), no. 3, 217–223 (1977). MR 444935
- Jochen Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23–43 (German). MR 299780, DOI 10.1515/crll.1972.255.23
- Colin Bennett and Manfred Stoll, Derivatives of analytic functions and bounded mean oscillation, Arch. Math. (Basel) 47 (1986), no. 5, 438–442. MR 870281, DOI 10.1007/BF01189985
- Johnny E. Brown, Derivatives of close-to-convex functions, integral means and bounded mean oscillation, Math. Z. 178 (1981), no. 3, 353–358. MR 635204, DOI 10.1007/BF01214872
- Joseph A. Cima and Karl E. Petersen, Some analytic functions whose boundary values have bounded mean oscillation, Math. Z. 147 (1976), no. 3, 237–247. MR 404631, DOI 10.1007/BF01214081
- Joseph A. Cima and Glenn Schober, Analytic functions with bounded mean oscillation and logarithms of $H^{p}$ functions, Math. Z. 151 (1976), no. 3, 295–300. MR 425128, DOI 10.1007/BF01214941
- Nikolaos Danikas, Über die BMOA-Norm von $\textrm {log}(1-z)$, Arch. Math. (Basel) 42 (1984), no. 1, 74–75 (German). MR 751474, DOI 10.1007/BF01198131
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494 S. A. Gelfer, (C. A. [ill]), [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] functions, assuming no pair of values $w$ and $- w$.)
- Daniel Girela, Integral means and BMOA-norms of logarithms of univalent functions, J. London Math. Soc. (2) 33 (1986), no. 1, 117–132. MR 829393, DOI 10.1112/jlms/s2-33.1.117
- Daniel Girela, BMO, $A_2$-weights and univalent functions, Analysis 7 (1987), no. 2, 129–143. MR 885120, DOI 10.1524/anly.1987.7.2.129 A. W. Goodman, Univalent functions. I, II, Mariner, Tampa, Florida, 1983. A. Z. Grinshpan (A. [ill]), [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] transl.: On the coefficients of univalent functions assuming no pair of values $w$ and $- w$, Math. Notes 11(1972), 3-11.
- J. A. Hummel, A variational method for Gel′fer functions, J. Analyse Math. 30 (1976), 271–280. MR 440025, DOI 10.1007/BF02786718
- James A. Jenkins, On Bieberbach-Eilenberg functions, Trans. Amer. Math. Soc. 76 (1954), 389–396. MR 62831, DOI 10.1090/S0002-9947-1954-0062831-6
- A. J. Lohwater, G. Piranian, and W. Rudin, The derivative of a schlicht function, Math. Scand. 3 (1955), 103–106. MR 72218, DOI 10.7146/math.scand.a-10430
- T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532–537. MR 140674, DOI 10.1090/S0002-9947-1962-0140674-7
- Shinji Yamashita, Almost locally univalent functions, Monatsh. Math. 81 (1976), no. 3, 235–240. MR 407263, DOI 10.1007/BF01303197
- Shinji Yamashita, Schlicht holomorphic functions and the Riccati differential equation, Math. Z. 157 (1977), no. 1, 19–22. MR 486487, DOI 10.1007/BF01214676
- Shinji Yamashita, F. Riesz’s decomposition of a subharmonic function, applied to BMOA, Boll. Un. Mat. Ital. A (6) 3 (1984), no. 1, 103–109 (English, with Italian summary). MR 739196
- Shinji Yamashita, A gap series with growth conditions and its applications, Math. Scand. 60 (1987), no. 1, 9–18. MR 908825, DOI 10.7146/math.scand.a-12167
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 321 (1990), 245-259
- MSC: Primary 30C45; Secondary 30C50
- DOI: https://doi.org/10.1090/S0002-9947-1990-1010891-X
- MathSciNet review: 1010891