## Gel′fer functions, integral means, bounded mean oscillation, and univalency

HTML articles powered by AMS MathViewer

- by Shinji Yamashita PDF
- Trans. Amer. Math. Soc.
**321**(1990), 245-259 Request permission

## Abstract:

A Gelfer function $f$ is a holomorphic function in $D = \{ \left | z \right | < 1\}$ such that $f(0) = 1$ and $f(z) \ne - f(w)$ for all $z$, $w$ in $D$. The family $G$ of Gelfer functions contains the family $P$ of holomorphic functions $f$ in $D$ with $f(0) = 1$ and Re $f > 0$ in $D$. If $f$ is holomorphic in $D$ and if the ${L^2}$ mean of $f’$ on the circle $\{ \left | z \right | = r\}$ is dominated by that of a function of $G$ as $r \to 1 - 0$, then $f \in BMOA$. This has two recent and seemingly different results as corollaries. A core of the proof is the fact that ${\operatorname {log}}f \in BMOA$ if $f \in G$. Besides the properties obtained concerning $f \in G$ itself, we shall investigate some families of functions where the roles played by $P$ in Univalent Function Theory are replaced by those of $G$. Some exact estimates are obtained.## References

- Albert Baernstein II,
*Univalence and bounded mean oscillation*, Michigan Math. J.**23**(1976), no. 3, 217–223 (1977). MR**444935** - Jochen Becker,
*Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen*, J. Reine Angew. Math.**255**(1972), 23–43 (German). MR**299780**, DOI 10.1515/crll.1972.255.23 - Colin Bennett and Manfred Stoll,
*Derivatives of analytic functions and bounded mean oscillation*, Arch. Math. (Basel)**47**(1986), no. 5, 438–442. MR**870281**, DOI 10.1007/BF01189985 - Johnny E. Brown,
*Derivatives of close-to-convex functions, integral means and bounded mean oscillation*, Math. Z.**178**(1981), no. 3, 353–358. MR**635204**, DOI 10.1007/BF01214872 - Joseph A. Cima and Karl E. Petersen,
*Some analytic functions whose boundary values have bounded mean oscillation*, Math. Z.**147**(1976), no. 3, 237–247. MR**404631**, DOI 10.1007/BF01214081 - Joseph A. Cima and Glenn Schober,
*Analytic functions with bounded mean oscillation and logarithms of $H^{p}$ functions*, Math. Z.**151**(1976), no. 3, 295–300. MR**425128**, DOI 10.1007/BF01214941 - Nikolaos Danikas,
*Über die BMOA-Norm von $\textrm {log}(1-z)$*, Arch. Math. (Basel)**42**(1984), no. 1, 74–75 (German). MR**751474**, DOI 10.1007/BF01198131 - Peter L. Duren,
*Theory of $H^{p}$ spaces*, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR**0268655** - Peter L. Duren,
*Univalent functions*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR**708494**
S. A. Gelfer, (C. A. [ill]), [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] - Daniel Girela,
*Integral means and BMOA-norms of logarithms of univalent functions*, J. London Math. Soc. (2)**33**(1986), no. 1, 117–132. MR**829393**, DOI 10.1112/jlms/s2-33.1.117 - Daniel Girela,
*BMO, $A_2$-weights and univalent functions*, Analysis**7**(1987), no. 2, 129–143. MR**885120**, DOI 10.1524/anly.1987.7.2.129
A. W. Goodman, - J. A. Hummel,
*A variational method for Gel′fer functions*, J. Analyse Math.**30**(1976), 271–280. MR**440025**, DOI 10.1007/BF02786718 - James A. Jenkins,
*On Bieberbach-Eilenberg functions*, Trans. Amer. Math. Soc.**76**(1954), 389–396. MR**62831**, DOI 10.1090/S0002-9947-1954-0062831-6 - A. J. Lohwater, G. Piranian, and W. Rudin,
*The derivative of a schlicht function*, Math. Scand.**3**(1955), 103–106. MR**72218**, DOI 10.7146/math.scand.a-10430 - T. H. MacGregor,
*Functions whose derivative has a positive real part*, Trans. Amer. Math. Soc.**104**(1962), 532–537. MR**140674**, DOI 10.1090/S0002-9947-1962-0140674-7 - Shinji Yamashita,
*Almost locally univalent functions*, Monatsh. Math.**81**(1976), no. 3, 235–240. MR**407263**, DOI 10.1007/BF01303197 - Shinji Yamashita,
*Schlicht holomorphic functions and the Riccati differential equation*, Math. Z.**157**(1977), no. 1, 19–22. MR**486487**, DOI 10.1007/BF01214676 - Shinji Yamashita,
*F. Riesz’s decomposition of a subharmonic function, applied to BMOA*, Boll. Un. Mat. Ital. A (6)**3**(1984), no. 1, 103–109 (English, with Italian summary). MR**739196** - Shinji Yamashita,
*A gap series with growth conditions and its applications*, Math. Scand.**60**(1987), no. 1, 9–18. MR**908825**, DOI 10.7146/math.scand.a-12167

*functions, assuming no pair of values*$w$

*and*$- w$.)

*Univalent functions*. I, II, Mariner, Tampa, Florida, 1983. A. Z. Grinshpan (A. [ill]), [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] [ill] transl.:

*On the coefficients of univalent functions assuming no pair of values*$w$

*and*$- w$, Math. Notes

**11**(1972), 3-11.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**321**(1990), 245-259 - MSC: Primary 30C45; Secondary 30C50
- DOI: https://doi.org/10.1090/S0002-9947-1990-1010891-X
- MathSciNet review: 1010891