On solvable groups of finite Morley rank
HTML articles powered by AMS MathViewer
- by Ali Nesin
- Trans. Amer. Math. Soc. 321 (1990), 659-690
- DOI: https://doi.org/10.1090/S0002-9947-1990-0968420-2
- PDF | Request permission
Abstract:
We investigate solvable groups of finite Morley rank. We find conditions on $G$ for $G’$ to split in $G$. In particular, if $G’$ is abelian and $Z(G) = 1$ we prove that $G = G’ \times T$ for some $T$ and the ring ${\mathbf {Z}}[T]/\text {ann}G’$ is intepretable in $G$. We exploit the methods used in proving these results to find more information about solvable groups.References
- Walter Baur, Gregory Cherlin, and Angus Macintyre, Totally categorical groups and rings, J. Algebra 57 (1979), no. 2, 407–440. MR 533805, DOI 10.1016/0021-8693(79)90230-8
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- Gregory Cherlin, Groups of small Morley rank, Ann. Math. Logic 17 (1979), no. 1-2, 1–28. MR 552414, DOI 10.1016/0003-4843(79)90019-6 G. Cherlin and J. Reineke, Stability and categoricity of commutative rings, Ann. Math. Logic 10 (1979), 376-399.
- I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54–106. MR 16094, DOI 10.1090/S0002-9947-1946-0016094-3
- Kathryn Enochs and Ali Nesin, On $2$-step solvable groups of finite Morley rank, Proc. Amer. Math. Soc. 110 (1990), no. 2, 479–489. MR 984788, DOI 10.1090/S0002-9939-1990-0984788-0 D. Lascar, Stabilité en théorie des modèles, Publ. Inst. Math. Pure Appl. Univ. Catholique de Louvain (1986). (French) D. Marker, Expansions of ${\mathbf {C}}$, preprint, 1988.
- Angus Macintyre, On $\omega _{1}$-categorical theories of abelian groups, Fund. Math. 70 (1971), no. 3, 253–270. MR 289280, DOI 10.4064/fm-70-3-253-270
- Angus Macintyre, On $\omega _{1}$-categorical theories of fields, Fund. Math. 71 (1971), no. 1, 1–25. (errata insert). MR 290954, DOI 10.4064/fm-71-1-1-25
- Bernard R. McDonald, Geometric algebra over local rings, Pure and Applied Mathematics, No. 36, Marcel Dekker, Inc., New York-Basel, 1976. MR 0476639
- Michael Morley, Categoricity in power, Trans. Amer. Math. Soc. 114 (1965), 514–538. MR 175782, DOI 10.1090/S0002-9947-1965-0175782-0 A. Nesin, A survey of results in groups of finite Morley rank, preprint, 1985.
- Ali Nesin, Solvable groups of finite Morley rank, J. Algebra 121 (1989), no. 1, 26–39. MR 992314, DOI 10.1016/0021-8693(89)90083-5
- Anand Pillay, An introduction to stability theory, Oxford Logic Guides, vol. 8, The Clarendon Press, Oxford University Press, New York, 1983. MR 719195 B. Poizat, Cours de théories des modèles, Nur Al-Mantiq Wal-Ma’rifah Villeurbanne, 1985. (French) —, Groupes stables, Nur Al-Mantiq Wal-Ma’rifah, 1987. (French) P. Samuel, Algèbre locale, Paris, 1953. (French)
- T. A. Springer, Linear algebraic groups, Progress in Mathematics, vol. 9, Birkhäuser, Boston, Mass., 1981. MR 632835
- Katsumi Tanaka, Some structure theorems for $\omega$-stable groups, Proc. Japan Acad. Ser. A Math. Sci. 63 (1987), no. 7, 254–257. MR 931257 S. Thomas, Groups of finite Morley rank, handwritten notes.
- Simon Thomas, An identification theorem for the locally finite nontwisted Chevalley groups, Arch. Math. (Basel) 40 (1983), no. 1, 21–31. MR 720890, DOI 10.1007/BF01192748 B. Zil’ber, Groups with categorical theories, Abstract of papers presented at the Fourth All-Union Symposium on Group Theory, Novosibirsk, 1973., Math. Inst. Sibirsk. Adel. Akad. Nauk SSSR, pp. 63-68. (Russian) —, The structure of models of categorical theories and the non-finite axiomatizability problem, preprint, mimeographed by VINITI, Dep. N2800-77 (Kemerovo, SSSR, 1977). (Russian)
- B. I. Zil′ber, Some model theory of simple algebraic groups over algebraically closed fields, Colloq. Math. 48 (1984), no. 2, 173–180. MR 758524, DOI 10.4064/cm-48-2-173-180
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 321 (1990), 659-690
- MSC: Primary 03C60; Secondary 20A15, 20F16
- DOI: https://doi.org/10.1090/S0002-9947-1990-0968420-2
- MathSciNet review: 968420