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SOME GLOBAL RESULTS ON EXTENSION
OF CR-OBJECTS IN COMPLEX MANIFOLDS

GUIDO LUPACCIOLU

ABSTRACT. We prove some results concerning the holomorphic extendability
of CR-objects defined on real hypersurfaces of a complex manifold. After a
preliminary generalization of the classic theorem on the extendability from the
boundary of a relatively compact domain, we discuss the extendability from
a part of the boundary of such a domain, the one side extendability from a
piece of hypersurface and the extendability from the boundary of an unbounded
domain.

Let M be a noncompact connected complex-analytic manifold with count-
able topology, of complex dimension n > 2.

The present paper deals with holomorphic extension of CR-objects defined
on real hypersurfaces of M . What in fact we do for the most part is to discuss
some generalizations in different directions of the well-known global extension
theorem which asserts the existence and uniqueness of a holomorphic extension
on an open domain D € M for a CR-function defined on the boundary bD of
D, under the condition HCI(M, @) =0 (cf. [9).

The CR-objects considered here are CR-sections, CR-distribution sections
and CR-hyperfunction sections of a holomorphic complex vector bundle on
M.

Our first result (Theorem 1.1) relates to the holomorphic extension of these
kinds of CR-objects from the boundary D of a domain D C M which need
not be relatively compact, but the closure of which is supposed to belong to some
paracompactifying family in M (not the whole family of closed sets). Such
a generalization of the global extension theorem does not seem to be already
found in the literature; actually, although it does not require any essentially new
ideas, is worth being discussed, as it allows one to derive other results of some
independent interest on extension of CR-objects.

Later, in §2, we discuss the question of holomorphic extendability on all of
a domain D € M for CR-objects which need not be defined on the whole
boundary bD, but just on the complement »D\K of a closed set K C bD.
This question has already been investigated, in more particular settings (cf. [11,
13, 14, 16, 17, 22, 23]), by using integral representations techniques. Here we
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generalize most of the results obtained so far by resorting to the theorem of §1
and using sheaf-theoretic techniques.

Next, in §3, we derive from the previous discussion some results concern-
ing the one side extension property for the CR-objects defined on a piece of
a real hypersurface in C" (n > 2). In particular we derive a proposition
(Corollary 3.2) which implies both the global and the local classical extension
theorems.

Finally, in §4, we prove a theorem which gives a sufficient condition for an
unbounded domain D ¢ C" (n > 2) under which the CR-objects defined on
bD can be extended holomorphically on D.

1. GLOBAL EXTENSION FROM THE WHOLE BOUNDARY

Let D be an open domain in M, not necessarily with compact closure,
with smooth boundary bD of class C', 1 < v < oo, or of class C* (i.e.
real-analytic).

Let W be a holomorphic complex vector bundle on M of finite rank r > 1.

If u is an integer with 0 < u < v, welet C*(bD, W) and C*(D, W) be the
spaces of sections of class C* of W on bD and D if bD is of class C™, we
let 2'(bD, W) be the space of distribution sections of W on bD ; moreover,
if bD isof class C*, we let Z(bD, W) be the space of hyperfunction sections
of W on bD.

Given an open set U C M such that W], is trivial and bDNU # &, an
element f of C*(bD, W), or @' (bD, W), or #(bD, W) can be expressed

on bDNU in terms of a local base (s,,...,s,) of (U, @(W)) as
f=>1es;,
Jj=1

with the fj ’s functions of class C*, or distributions, or hyperfunctions, respec-
tively, on bDNU .

Let us say that f is a CR-object on bD with coefficients in W, and let us

write

feCR(bD, W),
in case, for every U and (s,,...,s,) as above, the fj ’s are CR-functions, or
CR-distributions, or CR-hyperfunctions. We refer to [9, 12 and 18] for basic
information.

It is known (cf. the same references) that, when D is compact and bD is
connected, every f in CR(bD, 1), orin CR(bD, A’ H"(M)) ! is the boundary
value, in the appropriate sense, of a unique holomorphic function F € (D), or
form F € Q(D), provided H! (M, @) =0, 0r H'(M, Q") =0, respectively.
In particular, if f isin C*(bD, 1), orin C“(bD, A’PH*(M)), then F has an
extension of class C* to D, which is equal to f on bD.

"Here 1 means the trivial line bundle on M and H™(M) the holomorphic co-tangent bundle
of M.
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The starting point of this paper is the following generalization of the above
results.

Theorem 1.1. Let ® be a paracompactifying family in M, not the one of all
closed sets, and suppose that

Hy(M, (W) =0.

Then, if D € ® and bD is connected, every CR-object f € CR(bD, W) is
the boundary values of a unique holomorphic section F e I'(D, @(W)).
Moreover, if fe€C"(bD, W), then Fe€C*(D, W) and Fl,p=f.

Let us recall that a family ® of closed subsets of A is said to be a para-
compactifying family in A if every closed subset of a member of ® and every
finite union of members of @ are themselves members of @, moreover every
member of ® has some neighborhoods which are members of & as well.

It is plain that for ® = ¢, the family of all compact subsets of M, Theo-
rem 1.1 yields again the recalled known results (aside from the more general
coeflicients).

The proof of Theorem 1.1 can be developed along the same lines as in [9]
for the case f € C*(bD, W) as in [12] for the case f € 2'(bD, W) and as
in [18] for the case f € % (bD, W). Indeed, the replacement of ¢ by ® and
the consideration of more general coefficients do not require any essentially new
arguments.

In the smooth case one can also adapt the simple argument used in the clas-
sical book by Hormander [10, Theorem 2.3.2'], as outlined below.

One first extends f to a smooth section f of W on D, such that f = 0
on 5D, and then solves the equation 9v =a (a=9f on D,and a =0 on
M\D) by a global smooth section v of W supported in @ (which is possible
by the conditions D € ® and H;,(M ,@(W)) = 0); since v is holomorphic
on M\D, M\D is connected and (M\D)\supp(v) # & (because ® is not
the whole family of closed sets), it follows that v = 0 on M\D, and then

F = f — v is the asserted extension of f.

2. GLOBAL EXTENSION FROM A PART OF THE BOUNDARY

Throughout this section D will denote a relatively compact open domain in
M and K a closed subset of oD, in such a way that bD\K is connected and
smooth of class C", 1 <v < 0, or of class C”.

No regularity assumption is made on K.

We shall be concerned with the question of holomorphic extendability on the
whole D of the CR-objects with coefficients in W defined on the relatively
open part bD\K of bD. We let CR(bD\K, W) denote the set of these CR-
objects, of the various kinds specified in the previous section, according to the
regularity of bD\K .

For the sake of conciseness in statements, we shall simply say that the global
extension property holds for CR(bD\K , W), in order to mean the following:



764 GUIDO LUPACCIOLU

Every f € CR(bD\K, W) is the boundary values on 5D\K , in the appropriate
sense, of a unique holomorphic section F € I'(D, &(W)); moreover, if f €
C*(bD\K, W), 0<u <wv, then F admits an extension of class C* to D\K
which coincides with f on bD\K .

The following theorem is the basic result of this section.

Theorem 2.1. Suppose that HC1 (M,@(W))=0 and that there exists a compact
set E C M verifying the following conditions:
(i) EnND=K,;
(1)) M\E is connected,
(ii1) The homomorphism induced by inclusion

lim H, (U, @(W)) — H:(M , @(W))

(U open, U D E) is injective.
Then the global extension property holds for CR(bD\K , W).

Proof. Let Z Dbe a neighborhood basis of E of relatively compact open sets
such that, for each U € %, M\U is connected. Then, since HC1 (M,0W)) =
0, the restrictions H (M, #(W)) — HY(M\U, @(W)), U € % , are isomor-
phisms (Hartogs’s theorem). This implies (cf. [3, Lemma 2.13]) that the homo-
morphism
H'(M\E,&(W)) = lim H'(M\U, &(W))
vew

given by restriction is an isomorphism too. It follows (by the same reasoning
as in [3, p. 32]) that the canonical homomorphism

Hy(M, (W) — lim HX(U , &(W))

is injective. Therefore, by condition (iii), the homomorphism Hé(M , O(W))
— HCZ(M , @(W)) induced by inclusion is injective too.

Now, let M' =M \E and ®=cnNnM " be the family of all the intersections
of compact subsets of M with M, i.e. of all the closed subsets of M’ which
are relatively compact in M . Clearly ® is a paracompactifying family in M,
and the exact cohomology sequence

= H{(M,0(W)) - H\(M,o(W))
— HYM' ,0W)) - H (M, 0(W)) — -
gives
Hy(M',&(W)) =0.

Then, since D ¢ M', Clos,, (D) = D\K € @, Bd,, (D) = bD\K, and,
moreover, M’ is connected and @ is not the whole family of closed subsets of
M’ the conclusion follows from Theorem 1.1. Q.E.D.



GLOBAL RESULTS ON EXTENSION OF CR-OBJECTS 765

Remark. Condition (iii) of Theorem 2.1 is verified in particular if there is a basis
7% of open neighborhoods of E such that the homomorphisms HC2 (U,@(wW))
— H CZ(M ,@(W)), UeZ,induced by inclusion are injective. This, translated
in terms of Dolbeault cohomology, means the following:

Let g be a smooth W-valued 8-closed (0, 2)-form on M with
compact support in a small neighborhood of E. Then, if the

(%) equation du = g can be solved with compact support in M , it
can also be solved with compact support in a small neighborhood
of E.

In the smooth case there is a simple direct proof for the version of The-
orem 2.1 in which E verifies the above condition, by the following further
adaptation of Hormander’s argument [10, Theorem 2.3.2'].

The form « (see the end of the previous section) is now defined only on M\E
and is 0 outside D. Pick a cutoff function ¥, y =0 on E and y = 1 outside
a small neighborhood of E, and consider the (0, 2)-form g =9 (xa). Due to
condition (), we can finda (0, 1)-form k, supported near E, such that 9k =
g.Set B =yxa—k. Then B coincides with o outside a small neighborhood
of E and provides us with a d-closed extension of a to the whole M . Due
to the condition H C‘ (M,@(W)) =0, we can find a compactly supported global
section ¥ of W with 9v = B. Then F = f — v is a holomorphic extension
of f to the complement in D of a small neighborhood of E, and the proof
ends by shrinking this neighborhood.

The main applications of Theorem 2.1 are probably those relating to the case
where the manifold M is (n — 2)-complete, since (n — 2)-completeness seems
to be the most general quite verifiable condition which guarantees the vanishing
of H'(M,&(W)), for any W .

Let us recall that M is called g-complete (0 < g < n) in case there is an ex-
haustion function of class C° on M which is a strongly g-plurisubharmonic,
i.e. whose Levi form admits everywhere at least n — g positive eigenvalues.
Andreotti and Grauert [1] proved that, if M is g-complete, H' (M, ) =0
when j > g for every coherent analytic sheaf ¥ on M .

Hence, if our manifold M is (n — 2)-complete, it follows, via the Serre
duality theorem, that HC1 (M, @(W)) =0, as asserted above.

Now let us give the following

Definition. 4 compact set E C M is called q-complete (0 < g < n) in case it
admits a neighborhood basis 7/ of relatively compact q-complete open sets.

It is important for the following to point out that, if E is (n — 2)-complete,
then M\E is connected.
In fact we have H*" '(E, R) = lim vew H*~'(U, R), and it is known that,

due to (n — 2)-completeness, HZ”_l(U, R) = 0 for each U € Z . Hence
HZ""(E , R) = 0, which implies the connectedness of M\E .
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That being stated, a first obvious consequence of Theorem 2.1 is

Corollary 2.2. Suppose that n > 3, M is (n — 2)-complete and there exists an
(n — 3)-complete compact set E C M with END = K. Then, for any W, the
global extension property holds for CR(bD\K , W) .

We wish to observe that, if in the above corollary A is assumed to be Stein,
then the assumption that £ is a (n — 3)-complete compact set can be relaxed
as follows: E is closed (not necessarily compact) and there is a countable family
{Vu}z‘;1 of (n — 3)-complete open neighborhoods of E with

o0
for every v, and ﬂ V,=E.
v=I
As a matter of fact, givena C strongly plurisubharmonic exhaustion function
p: M — R, with p <0 on K, theset E' = En{p <0} verifies the assumption
of Corollary 2.2, since the open sets U, =V N{p < 1/v}, v=1,2,..., are
(n — 3)-complete (cf. [21]) and make a neighborhood basis of E'.
Corollary 2.2, in view of the above observation too, improves some results
of [16 and 17].
Now we discuss another consequence of Theorem 2.1, which is indeed the
main result of this section and will be applied afterwards. Preliminarily let us
give the following

V,o>V,

v+1

Definition. 4 compact set E C M is called q-convex (0 < q < n) in case
there exists a sequence {uu}f,”=l of C* strongly q-plurisubharmonic exhaustion
functions on M such that

oo
{u, <0} >{u, , <0} forevery v, and ﬂ{uu <0}=E.
v=1

Clearly, the g-convexity of E implies the g-completeness of both M and
E.

This notion of g-convexity generalizes in a quite natural way to the case of a
g-complete manifold the standard notion of holomorphic convexity in a Stein
manifold. In fact, if M is Stein (i.e. O-complete), then it is known that the
holomorphic convexity of a compact set £ C M amounts to the existence of
a sequence {u,} as above, with each u, being strongly plurisubharmonic (cf.
[10, Theorem 5.1.6]). On the other hand, even in a Stein manifold a g-convex
compact set need not be holomorphically convex, unless ¢ = 0.

That being stated, we can prove

Theorem 2.3. Suppose that M is (n — 2)-complete and that there is a (n — 2)-
convex compact set E C M with END = K. Then, for any W, the global
extension property holds for CR(bD\K , W) .

Proof. If {u,} is a sequence as described above, which exhibits the (n — 2)-
convexity of E, let us set

U, ={u, <0}, v=1,2,....
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Then, in view of the discussion after the proof of Theorem 2.1, all we have to
prove is that, for every v, the homomorphism

2 2
H.(U,,0(W))— H (M, (W))
induced by inclusion is injective, for any W .
Consider the spaces H" *(M, Q"(W")), H" *(U,, Q"(W")), with their

natural topologies obtained by means of the Cech cohomology. By a result of
Andreotti and Grauert [1, p. 248], the homomorphism

H' (M, QW) - H' (U, Q"(W"))

induced by inclusion has a dense image. The same is then true of the induced
homomorphism

aHn—Z(AI’ Qn(W*)) - UHn_Z(UU ’ Qn(W*))
of the associated separated spaces. Hence the transposed homomorphism

Hom cont"’H" (U, , Q"(W")), C) —» Hom cont"H" (M , Q"(W")), C)
is injective.

On the other hand, both M and U, are (n — 2)-complete (cf. [21]) for
the (n — 2)-completeness of U ), and it is known that consequently the spaces
HX(M,@(W)) and H (U,,@(W)) are separated (cf. [2]). It follows, by the
Serre duality, that there is a commutative diagram

HXU,, EW)—H (M, &)
1= =)

Hom cont("H"~*(U,, Q"(W")), C)—Hom cont(’"H" *(M , Q"(W™)), C)
and hence we get the desired conclusion. Q.E.D.

Note that the assumptions of Theorem 2.3 hold in particular in case M is
Stein and K Mﬂﬁ =K (with K  being the @ (M)-hull of K ), and in fact they
amount to saying that this is the case for n = 2. In this situation the global
extension property from bD\K has already been proved in [11] by different
techniques for the case of continuous CR-functions.

We conclude this section by deriving a corollary of Theorem 2.3 which gen-
eralizes widely what was proved in [13].

Corollary 2.4. Suppose that M is q-complete, 0 < q < n — 2, and that there is
a C® (n -2 - q)-plurisubharmonic function p: M — R such that

K c{p=0}, D\K c {p >0}.
Then, for any W, the global extension property holds for CR(bD\K , W).

Proof. Let p be a C™ strongly g-plurisubharmonic exhaustion function on
M such that K C {p < 0}. One can gasily verify that, if ¢ is any positive
real number, the function e’ — 1 + ¢p is a strongly (n — 2)-plurisubharmonic
exhaustion function on M ; therefore the set

p
E,={e"—1+¢p <0}



768 GUIDO LUPACCIOLU

is compact and (n—2)-convex in M . Moreover, by our assumptions, it is plain
that E, N D is contained in any arbitrarily small neighborhood of K , provided
¢ is small enough.

Then let us set

D, = D\E,, K, =DNbE,.

Thus, for all sufficiently small ¢, D, is a domain and bD,\K, = bD\E, is con-
nected, since so are D and bD\K , respectively. Therefore, by resorting to The-
orem 2.3, we infer that the global extension property holds for CR(bD,\K,, W)
for all sufficiently small ¢.

The conclusion is then a consequence of the uniqueness of the extension of
every CR-object. Q.E.D.

3. THE ONE SIDE EXTENSION PROPERTY

The last results of the previous section can be applied to the question of
the one side extension property for the CR-objects defined on a piece of a real
hypersurface of C" (n>2).

Let us consider a relatively closed real hypersurface S of an openset Q € C”.
S is assumed to be connected, smooth of class C* (1 < v < o0) or of class C*
and orientable; instead no regularity assumptions are made on its topological
boundary $ = Closq (S)\S'.

Given a holomorphic complex vector bundle W on C", according to the
previous sections we let CR(S, W) denote the set of the CR-objects with co-
efficients in W defined on S. Of course, in the present setting, as there exist
global holomorphic trivializations of W , there is no loss of generality in think-
ing of W just as a complex vector space.

By saying that the one side extension property holds for CR(S, W) we shall
mean the following: There exists an open neighborhood U ¢ Q of § such that
U\S has two connected components U, U~ and every f € CR(S, W) is
the boundary values, in the appropriate sense, of a unique holomorphic section
Fe l"(Ui , @(W)); moreover, if f € C*S, W), 0<u<uwv, then F admits
an extension of class C* to U US which coincides with fon S.

In the first place let us prove

Theorem 3.1. Suppose there is a (n — 2)-convex compact set E C C" such that
ScE, ScC'\E.
Then, for any W, the one side extension property holds for CR(S, W).
Proof. We will prove that there is an open domain D € C" with
DcC'\E, ScbhD and bD\SCE.
After that the thesis will be a straightforward consequence of Theorem 2.3, for
K =bD\S.
First of all we need to prove that

2n-2

(1) H" 7(E,C)=0.
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With the notation as in the proof of Theorem 2.3, we have
H"7(E, €)= lim H"7/(U,. ©),

and hence (1) will follow if we show that, for every v, H 2"'Z(UU , C) vanishes.
Let us consider first the case 7 = 2: in this case U, is a Runge open set in c? ,
and then the vanishing of H Z(U,, , C) follows from a known result on Runge
domains in C" (cf. [10, p. 58]). Next, assume that n > 3, and consider the
following subcomplex '€*(U ) of the complex &*(U,) of C* complex-

v
valued differential forms on U, :

&), ifg<n-2,

‘e, =1 z;U,), ifg=n-2,

0, ifg>n-2.
Since U, is (n — 2)-complete, a standard spectral sequences argument shows
that the inclusion '&€*(U)) ¢ &"*(U,) induces an isomorphism on total
cohomology. This implies in particular, on account of the Dolbeault and the
De Rham isomorphisms, that there is a surjective continuous homomorphism

H" WU, Q" - H" U, C).

On the other hand, since the homomorphism H" *(C", Q") — H"? u,, Q"
induced by inclusion has a dense image (cf. the proof of Theorem 2.3),
°H""*(U,, Q") vanishes. Hence H*" (U, C) = °H"*(U,, C) vanishes
as well. This concludes the proof of (1).

Now, (1) implies, via the cohomology sequence with compact supports

2n—2 2n—1 2n—1
_}H" (EaC)—‘)ch (Cn\EaC)_’ch (CnsC)_’"'a
that
(2) H"'(C"\E,C)=0.
Consider then the cohomology sequence with compact supports
2n—1 2n—1
—H" (C"\E,C)—H""(S,C)
2 2
— H"((C"\E)\S, C) - H."(C"\E, C) — 0.

Here we have H, Cz"(C"\E , C) = C, because E does not disconnect C" (see the
discussion after Theorem 2.1), and HCZ”"'(S , C) = C, because S is connected
and orientable. Therefore, due to (2), we get
(3) H(C'\ENS,C)=CaC.

Finally, (3) means that (C"\E)\S is made by two connected components.
Clearly, by the compactness of £ U S, one of these components must be rela-
tively compact. This proves the existence of D. Q.E.D.

In the same way as we derived Corollary 2.4 from Theorem 2.3, now we
can derive from Theorem 3.1 the following other result relating to the one side
extension property.
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Corollary 3.2. Suppose that there is a C* (n —2)-plurisubharmonic function p
on C" such that

Sc{p=0}, Sci{p>0}.
Then, for any W, the one side extension property holds for CR(S, W).

As the proof is essentially a repetition of that of Corollary 2.4, we dispense
with it.

It is worth while to point out that Corollary 3.2 implies the local exten-
sion theorems of Hans Lewy’s type for CR-functions, CR-distributions and
CR-hyperfunctions. Indeed we have

Proposition 3.3. Let X be a piece of a Cc? regular hypersurface in C", and let
z° € T be a point where the Levi form is not degenerate. Then we can find an
open neighborhood Q € C" of 2% insucha way that S = XN Q is a relatively
closed connected hypersurface in Q and the assumptions of Corollary 3.2 are
Sulfilled.

Proof. Arguing as in [10, p. 51], we may assume that X is a relatively closed
hypersurface in an open neighborhood @ of the origin O, that =0 and
that X is represented in w by an equation r(z, ..., z,) = 0, with r being

of the form
1,n

r=Im(z,) + Y 4,27, + 0(|z°)
ik
and 4,, > 0.

We claim that there is no loss of generality in assuming further that the
binary Hermitian form Z A zk is positive definite. As a matter of fact,
let s = exp(cr) — 1, Wthh clearly is another defining function of X for any
constant ¢ > 0; then, since

I,n
s=c (Im(zz) + ZAjkzj?k + %}22]2 + O(lz|3)) ,

ik

after replacing r by s/c for ¢ large enough, we have a defining function of Z
with the asserted features.
Now, since

: 1,2 .
- 3
r(z,,2,,0,...,0)=Im(z,) + E Ajkzjzk+0(|(zl, z,,0,...,0))
Jk

and Z;i A "z jEk is positive definite, we can choose two small real numbers
0 >0, ¢>0 sothat

2 2
Q={zeC": |z, +|z,/' <6, —Im(z,) + |z,/* + -+ |z, < &} C w,
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r > 0 on the part of bQ where |21|2 + |22|2 =¢ and S =XNQ is connected
and relatively closed in Q. Therefore we have:

S=XnbQc{zeC": —Im(z,) + |z, +- +|z,[ = ¢},
Sc{zeC" —Im(22)+{z3|2+-~-+|zn|2<s},

Then, since the function p = ¢ +Im(z,) - |z3]2 — = lznl2 is a real-analytic
(n — 2)-plurisubharmonic function on C", we conclude that S verifies the as-
sumptions of Corollary 3.2. Q.E.D.

Thus Corollary 3.2 does imply the local extension theorems of Hans Lewy’s
type. On the other hand it trivially implies, for $ = @ and via the Hartogs the-
orem, the corresponding global extension theorems for the CR-objects defined
on the boundary of a bounded domain of C”. Therefore Corollary 3.2 can
be considered as a proposition providing a unification of the local and global
extension theorems in C". Another such unification, based on different ideas,
has already been obtained previously by Fichera [7].

Actually we wonder if Corollary 3.2 could imply also a recent theorem of
Trépreau [24] to the effect that the local one side extension property holds at a
point ez, provided there are no germs of complex hypersurfaces passing
through 2% and contained in X. One should prove that the thesis of Proposi-
tion 3.3 is still true under this weaker assumption; however the matter seems
to be rather complicated and we limit ourselves to notice that, at least in the
case when n = 2 and X is smooth of class C*, a proof could probably be
developed along the same lines as in [5, Theorem 3.1.10].

4. GLOBAL EXTENSION ON UNBOUNDED DOMAINS OF C”

In this last section we discuss the following question.

Given an unbounded domain D c C", n > 2, with boundary oD connected
and smooth of class C”, 1 < v < 00, or of class C*, under which conditions
does the global extension property hold for the CR-objects defined on 6D ?

We have already considered this question in [15] for the case of continuous
CR-functions; here, in view of the previous results of this paper, we are able to
prove a quite more general theorem than that of [15].

Let us consider the hyperplane “at infinity” PZ;' of C", so that

n n n—1
C =P \P_ .
For every subset G ¢ C", let us set
G = Closp: (G);
thus G is obtained by adding to G = Clos (G) its points at infinity.
With D being as above, we have
Theorem 4.1. Suppose there exist q entire analytic hypersurfaces H,, ..., H
of C", 1<qg<n-1, sothat

DnH N nH =02.
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Then, if W is any holomorphic complex vector bundle of finite rank on P" , the
global extension property holds for CR(bD, W).

Proof. In the first place we observe that, since for an entire hypersurface H C
C" which is not algebraic one has H> PZ; ! (cf. [20]), the condition of the the-
orem enforces the algebraicity of at least one of the hypersurfaces H,, ..., H i
moreover, if H,,..., H 4 1 < ¢’ < g, are all the algebraic ones, for the same
reason we have

(DnH n---nH)NPL' =2,

which means that DN 1‘~Il N---NH Y is a compact subset of C". Therefore, if
g’ < n—1, we can obviously choose n—1—gq' further algebraic hypersurfaces

1 !
Hq’+1 s ..., H,_,, such that
~ and fad ) ndy]
DnH N---NH,NH,  N---NH,_ =C.
Hence we may assume from the beginning that ¢ =n~1 and H, ..., H,_,

are all algebraic.
Now, let us set

~ ~ ~ -1
M=P"\(Hn--nH_,), K=DnP. .

Clearly D € M and the boundary of D in M is made by bD = Bd..(D) and
by K.

We will construct a sequence {u,} of C* strongly (n—2)-plurisubharmonic
exhaustion functions on M such that

(*) {u, <0} >{u,, <0}forall v, and 5nﬂ{u,,<0}=K;

v=1

the conclusion will then follow from Theorem 2.3 for E =, {u, < 0}.

Let ({,,...,,) be homogeneous coordinates in P" with P. '={¢, =0}
and let
Fi(ly, -»8)=0,...,F,_({,...,¢£,)=0
be equations of 1?{1 Y e ﬁn_l , respectively. After taking suitable powers, we
may assume that F|, ..., F,_, have the same degree, r say.

Consider the two real-analytic functions p, p: M — R defined by
1%l

|F P+ +|F,_

(1GI> + -+ 18,1

\F,P+- +|F,_,

with C being a real constant such that K C {p < 0}.
Then set, for every positive integer v,

(PP

Lo --s 8,1+ log +C,

u,=p+(1/v)p.
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We claim that these functions have the asserted properties. As a matter of fact,
let Mj = M\{Fj =0}; j=1,...,n—1, and consider the holomorphic maps

[ M — C"! given by

Ty or
[Cos-vvr C P G0/ Fy FyJF, oo Fo [Fy Fi [Fy o Fy [F)),
j=1,...,n—=1. Then on Mj we have

- . |z, 1
ddu, = ;00 ( : + —log
/ L4zl + oz, PV L4+ 4z, P

UGl + - +18,D)"
|F|? ’

hence we see that u, is strongly (n — 2)-plurisubharmonic on M ;180 it is then

1 -
+ ;6610g

on all of M, since M = U;';‘ Mj. Moreover u, is exhaustive, since so is
p and p is bounded from below. Finally, the sequence {u,} clearly verifies
(x). Q.E.D.

We conclude by observing that the assumption of Theorem 4.1, as is apparent
from the first part of the proof, can be translated in the following way: There
exist q polynomials P, , ..., Pq €Clz,,...,z,], 1<q<n—-1, of respective
degrees r, ..., r,. S0 that

Dc{zeC": |P()""" + - +|P(2)"" > (1 +2)},
with r being the least common multiple of r, ..., r,.
Remark added during revision. Recently a paper by B. Joricke (Removable sin-
gularities of CR-functions, Ark. Mat. 26 (1988), 117-143) appeared, which also
deals with the global extension property of CR-functions from a part of the
boundary of a relatively compact domain D .
Joricke considers the case where D is a C>-bounded strongly pseudocon-
vex domain in C" and obtains some relevant results in this area by function-
theoretic techniques based on the Kontinuitétssatz.
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