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ABSTRACT. We prove some results concerning the holomorphic extendability 
of CR-objects defined on real hypersurfaces of a complex manifold. After a 
preliminary generalization of the classic theorem on the extendability from the 
boundary of a relatively compact domain, we discuss the extendability from 
a part of the boundary of such a domain, the one side extendability from a 
piece of hypersurface and the extendability from the boundary of an unbounded 
domain. 

Let M be a noncompact connected complex-analytic manifold with count-
able topology, of complex dimension n ~ 2. 

The present paper deals with holomorphic extension of CR-objects defined 
on real hypersurfaces of M. What in fact we do for the most part is to discuss 
some generalizations in different directions of the well-known global extension 
theorem which asserts the existence and uniqueness of a holomorphic extension 
on an open domain D ({; M for a CR-function defined on the boundary bD of 
D, under the condition H; (M, &') = 0 (cf. [9]). 

The CR-objects considered here are CR-sections, CR-distribution sections 
and CR-hyperfunction sections of a holomorphic complex vector bundle on 
M. 

Our first result (Theorem 1.1) relates to the holomorphic extension of these 
kinds of CR-objects from the boundary bD of a domain D C M which need 
not be relatively compact, but the closure of which is supposed to belong to some 
paracompactifying family in M (not the whole family of closed sets). Such 
a generalization of the global extension theorem does not seem to be already 
found in the literature; actually, although it does not require any essentially new 
ideas, is worth being discussed, as it allows one to derive other results of some 
independent interest on extension of CR-objects. 

Later, in §2, we discuss the question of holomorphic extendability on all of 
a domain D ({; M for CR-objects which need not be defined on the whole 
boundary bD, but just on the complement bD\K of a closed set K c bD. 
This question has already been investigated, in more particular settings (cf. [11, 
13, 14, 16, 17, 22, 23]), by using integral representations techniques. Here we 
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generalize most of the results obtained so far by resorting to the theorem of § 1 
and using sheaf-theoretic techniques. 

Next, in §3, we derive from the previous discussion some results concern-
ing the one side extension property for the CR-objects defined on a piece of 
a real hypersurface in en (n ~ 2). In particular we derive a proposition 
(Corollary 3.2) which implies both the global and the local classical extension 
theorems. 

Finally, in §4, we prove a theorem which gives a sufficient condition for an 
unbounded domain D c en (n ~ 2) under which the CR-objects defined on 
bD can be extended holomorphically on D. 

1. GLOBAL EXTENSION FROM THE WHOLE BOUNDARY 

Let D be an open domain in M, not necessarily with compact closure, 
with smooth boundary bD of class CV , 1 ::; v ::; 00, or of class CW (i.e. 
real-analytic) . 

Let W be a holomorphic complex vector bundle on M of finite rank r ~ 1 . 
If u is an integer with 0::; u ::; v, we let CU(bD, W) and CU(D, W) be the 

spaces of sections of class CU of W on bD and D; if bD is of class COO , we 
let g' (bD, W) be the space of distribution sections of W on bD; moreover, 
if bD is of class CW , we let ~ (bD, W) be the space of hyperfunction sections 
of W on bD. 

Given an open set U C M such that Wlu is trivial and bD n U =I- 0, an 
element f of CU(bD, W), or g'(bD, W), or ~(bD, W) can be expressed 
on bD n U in terms of a local base (SI' ... ,sr) of qu, &,(W)) as 

r 

f= Lfj®Sj' 
j=1 

with the fj 's functions of class C U , or distributions, or hyperfunctions, respec-
tively, on bD n U. 

Let us say that f is a CR-object on bD with coefficients in W, and let us 
write 

f E CR(bD, W), 
in case, for every U and (SI' ... ,sr) as above, the fj 's are CR-functions, or 
CR-distributions, or CR-hyperfunctions. We refer to [9, 12 and 18] for basic 
information. 

It is known (cf. the same references) that, when D is compact and bD is 
connected, every f in CR( b D, 1) , or in CR( b D, AP H* (M)) ,I is the boundary 
value, in the appropriate sense, of a unique holomorphic function F E &,(D) , or 
form F E nP (D), provided H: (M , &') = 0, or H: (M , QP) = 0, respectively. 
In particular, if f is in CU(bD, 1), or in CU(bD, AP H*(M)) , then F has an 
extension of class CU to D, which is equal to f on bD. 

I Here 1 means the trivial line bundle on M and H* (M) the holomorphic co-tangent bundle 
of M. 
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The starting point of this paper is the following generalization of the above 
results. 

Theorem 1.1. Let <I> be a paracompactilying lamily in M, not the one 01 all 
closed sets, and suppose that 

I H<p(M, &(W)) = O. 

Then, il D E <I> and bD is connected, every CR-object IE CR(bD, W) is 
the boundary values 01 a unique holomorphic section FE r(D, &(W)). 

Moreover, if IE CU(bD, W), then FE CU(D, W) and FlbD = I. 
Let us recall that a family <I> of closed subsets of M is said to be a para-

compactifying family in M if every closed subset of a member of <I> and every 
finite union of members of <I> are themselves members of <1>, moreover every 
member of <I> has some neighborhoods which are members of <I> as well. 

It is plain that for <I> = c, the family of all compact subsets of M, Theo-
rem 1.1 yields again the recalled known results (aside from the more general 
coefficients) . 

The proof of Theorem 1.1 can be developed along the same lines as in [9] 
for the case IE CU(bD, W) as in [12] for the case IE 9' (bD, W) and as 
in [18] for the case I E yg (bD, W). Indeed, the replacement of c by <I> and 
the con.sideration of more general coefficients do not require any essentially new 
arguments. 

In the smooth case one can also adapt the simple argument used in the clas-
sical book by Hormander [10, Theorem 2.3.2'], as outlined below. 

One first extends I to a smooth section j of W on D, such that 8 j = 0 
on bD, and then solves the equation 8v = 0: (0: = 8 j on D, and 0: = 0 on 
M\D) by a global smooth section v of W supported in <I> (which is possible 
by the conditions DE <I> and H~(M, &(W)) = 0); since v is holomorphic 
on M\D, M\D is connected and (M\D)\ supp(v) =I- 0 (because <I> is not 
the whole family of closed sets), it follows that v = 0 on M\D, and then 
F = j - v is the asserted extension of I. 

2. GLOBAL EXTENSION FROM A PART OF THE BOUNDARY 

Throughout this section D will denote a relatively compact open domain in 
M and K a closed subset of bD, in such a way that bD\K is connected and 
smooth of class C", 1 ::::: v ::::: 00 , or of class C W • 

No regularity assumption is made on K. 
We shall be concerned with the question of holomorphic extendability on the 

whole D of the CR-objects with coefficients in W defined on the relatively 
open part bD\K of bD. We let CR(bD\K, W) denote the set of these CR-
objects, of the various kinds specified in the previous section, according to the 
regularity of bD\K. 

For the sake of conciseness in statements, we shall simply say that the global 
extension property holds lor CR(bD\K, W), in order to mean the following: 
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Every f E CR(bD\K, W) is the boundary values on bD\K, in the appropriate 
sense, of a unique holomorphic section F E r(D, &,(W» ; moreover, if f E 
CU(bD\K, W), 0:5 u :5 v, then F admits an extension of class CU to D\K 
which coincides with f on bD\K. 

The following theorem is the basic result of this section. 

Theorem 2.1. Suppose that H:(M, &,(W» = 0 and that there exists a compact 
set E c M verifying the following conditions: 

(i) EnD = K; 
(ii) M\E is connected; 

(iii) The homomorphism induced by inclusion 

~ H;(U, &,(W» -+ H;(M ,&,(W» 

(U open, U:J E) is injective. 
Then the global extension property holds for CR(bD\K, W). 

Proof. Let '!I be a neighborhood basis of E of relatively compact open sets 
such that, for each U E '!I, M\U is connected. Then, since H:(M, &,(W» = 
0, the restrictions F(M, &,(W» -+ HO(M\U, &,(W» , U E '!I, are isomor-
phisms (Hartogs's theorem). This implies (cf. [3, Lemma 2.13]) that the homo-
morphism 

HI (M\E ,&,(W» -+ lim Hl(M\U, &,(W» 
+--
UE'l'I 

given by restriction is an isomorphism too. It follows (by the same reasoning 
as in [3, p. 32]) that the canonical homomorphism 

Hi(M, &,(W» -+ ~ H;(U, &,(W» 

is injective. Therefore, by condition (iii), the homomorphism Hi(M, &,(W» 
-+ H;(M, &,(W» induced by inclusion is injective too. 

Now, let M' = M\E and <I> = c n M' be the family of all the intersections 
of compact subsets of M with M' , i.e. of all the closed subsets of M' which 
are relatively compact in M. Clearly <I> is a paracompactifying family in M' , 
and the exact cohomology sequence 

gives 
1 , 

H<I>(M ,&,(W» = O. 

Then, since D c M', ClosM,(D) = D\K E <1>, BdM,(D) = bD\K, and, 
moreover, M' is connected and <I> is not the whole family of closed subsets of 
M' , the conclusion follows from Theorem 1.1. Q.E.D. 
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Remark. Condition (iii) of Theorem 2.1 is verified in particular if there is a basis 
W of open neighborhoods of E such that the homomorphisms H;(U, &(W)) 
-+ H;(M, &(W)), U E W, induced by inclusion are injective. This, translated 
in terms of Dolbeault cohomology, means the following: 

Let g be a smooth W -valued 8-closed (0, 2)-form on M with 
compact support in a small neighborhood of E. Then, if the 

(*) equation 8u = g can be solved with compact support in M, it 
can also be solved with compact support in a small neighborhood 
of E. 

In the smooth case there is a simple direct proof for the version of The-
orem 2.1 in which E verifies the above condition, by the following further 
adaptation of Hormander's argument [10, Theorem 2.3.2']. 

The form a (see the end of the previous section) is now defined only on M\E 
and is 0 outside D. Pick a cutoff function X, X = 0 on E and X = 1 outside 
a small neighborhood of E, and consider the (0, 2)-form g = 8(xa). Due to 
condition (*), we can find a (0, 1 )-form k, supported near E , such that 8k = 
g. Set P = xa - k. Then P coincides with a outside a small neighborhood 
of E and provides us with a 8-closed extension of a to the whole M. Due 
to the condition H: (M , &( W)) = 0, we can find a compactly supported global 
section .v of W with 8v = p. Then F = J - v is a holomorphic extension 
of f to the complement in D of a smatl neighborhood of E, and the proof 
ends by shrinking this neighborhood. 

The main applications of Theorem 2.1 are probably those relating to the case 
where the manifold M is (n - 2)-complete, since (n - 2)-completeness seems 
to be the most general quite verifiable condition which guarantees the vanishing 

I of He (M, &(W)), for any W. 
Let us recall that M is called q-complete (0::; q ::; n) in case there is an ex-

haustion function of class COO on M which is a strongly q-plurisubharmonic, 
i.e. whose Levi form admits everywhere at least n - q positive eigenvalues. 
Andreotti and Grauert [1] proved that, if M is q-complete, Hi (M , 9T) = 0 
when j > q for every coherent analytic sheaf 9T on M. 

Hence, if our manifold M is (n - 2)-complete, it follows, via the Serre 
duality theorem, that H: (M , &( W)) = 0 , as asserted above. 

Now let us give the following 

Definition. A compact set E c M is called q-complete (0 ::; q ::; n) in case it 
admits a neighborhood basis W of relatively compact q-complete open sets. 

It is important for the following to point out that, if E is (n - 2)-complete. 
then M\E is connected. 

In fact we have H 2n - 1(E, R) s:: lim H 2n - 1(U, R), and it is known that, 
----t UEft' 

due to (n - 2)-completeness, H 2n - 1(U, R) = 0 for each U E W. Hence 
H 2n - 1 (E, R) = 0, which implies the connectedness of M\E. 
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That being stated, a first obvious consequence of Theorem 2.1 is 
Corollary 2.2. Suppose that n ~ 3, M is (n - 2)-complete and there exists an 
(n - 3)-complete compact set E c M with En D = K. Then, for any W, the 
global extension property holds for CR(bD\K, W). 

We wish to observe that, if in the above corollary M is assumed to be Stein, 
then the assumption that E is a (n - 3)-complete compact set can be relaxed 
as follows: E is closed (not necessarily compact) and there is a countable family 
{VJ::1 of (n - 3)-complete open neighborhoods of E with 

00 

Vv :J ~+ 1 for every v, and n Vv = E . 
v=l 

As a matter of fact, given a COO strongly plurisubharmonic exhaustion function 
p: M ~ R, with p ~ 0 on K, the set E' = En{p ~ O} verifies the assumption 
of Corollary 2.2, since the open sets Uv = Vv n {p < 1/ v }, v = 1 , 2, ... , are 
(n - 3)-complete (cf. [21]) and make a neighborhood basis of E' . 

Corollary 2.2, in view of the above observation too, improves some results 
of [16 and 17]. 

Now we discuss another consequence of Theorem 2.1, which is indeed the 
main result of this section and will be applied afterwards. Preliminarily let us 
give the following 

Definition. A compact set E c M is called q-convex (0 ~ q ~ n) in case 
there exists a sequence {uv }:: 1 of COO strongly q-plurisubharmonic exhaustion 
functions on M such that 

00 

{uv < O} ;2) {uv+1 < O} for every v, and n {uv < O} = E . 
v=l 

Clearly, the q-convexity of E implies the q-completeness of both M and 
E. 

This notion of q-convexity generalizes in a quite natural way to the case of a 
q-complete manifold the standard notion of holomorphic convexity in a Stein 
manifold. In fact, if M is Stein (i.e. O-complete), then it is known that the 
hoiomorphic convexity of a compact set E c M amounts to the existence of 
a sequence {u v } as above, with each Uv being strongly plurisubharmonic (cf. 
[10, Theorem 5.1.6]). On the other hand, even in a Stein manifold a q-convex 
compact set need not be holomorphically convex, unless q = 0 . 

That being stated, we can prove 

Theorem 2.3. Suppose that M is (n - 2)-complete and that there is a (n - 2)-
convex compact set E c M with E n D = K. Then, for any W, the global 
extension property holds for CR(bD\K, W). 
Proof. If {uv } is a sequence as described above, which exhibits the (n - 2)-
convexity of E, let us set 

v = 1,2, .... 
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Then, in view of the discussion after the proof of Theorem 2.1, all we have to 
prove is that, for every v, the homomorphism 

H:(Uv ' &(W)) ~ H:(M, &(W)) 

induced by inclusion is injective, for any W. 
Consider the spaces H n- 2(M, Qn(W*)), H n- 2(Uv ' Qn(W*)) , with their 

natural topologies obtained by means of the tech cohomology. By a result of 
Andreotti and Grauert [1, p. 248], the homomorphism 

H n- 2(M, Qn(W*)) ~ H n- 2(Uv ' Qn(W*)) 

induced by inclusion has a dense image. The same is then true of the induced 
homomorphism 

(JHn- 2(M, nn(W*)) ~ (JHn- 2(Uv ' Qn(W*)) 

of the associated separated spaces. Hence the transposed homomorphism 
(J n-2 n * (J n-2 n * Homcont( H (Uv ' Q (W )), C) ~ Homcont( H (M, Q (W )), C) 

is injective. 
On the other hand, both M and Uv are (n - 2)-complete (cf. [21]) for 

the (n - 2)-completeness of Uv ), and it is known that consequently the spaces 
H;(M, &(W)) and H;(Uv ' &(W)) are separated (cf. [2]). It follows, by the 
Serre duality, that there is a commutative diagram 

H;(Uv ' &(W))~H;(M, &(W)) 
12:: 2::1 

HomconttHn- 2(Uv ' Qn(w*)), C)~Homcont((JHn-2(M, Qn(w*)), C) 
and hence we get the desired conclusion. Q.E.D. 

Note that the assumptions of Theorem 2.3 hold in particular in case M is 
Stein and KMnD = K (with KM being the &(M)-hull of K), and in fact they 
amount to saying that this is the case for n = 2. In this situation the global 
extension property from bD\K has already been proved in [11] by different 
techniques for the case of continuous CR-functions. 

We conclude this section by deriving a corollary of Theorem 2.3 which gen-
eralizes widely what was proved in [13]. 

Corollary 2.4. Suppose that M is q-complete, 0 ~ q ~ n - 2, and that there is 
a COO (n - 2 - q )-plurisubharmonic junction p: M ~ R such that 

K c {p = a}, D\K c {p > O}. 
Then, jor any W, the global extension property holds jor CR(bD\K, W). 
Proof. Let p be a COO strongly q-plurisubharmonic exhaustion function on 
M such that K c {p < O}. One can ,easily verify that, if e is any positive 
real number, the function eP - 1 + ep is a strongly (n - 2)-plurisubharmonic 
exhaustion function on M; therefore the set 

Eo = {eP - 1 + ep ~ O} 
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is compact and (n - 2)-convex in M. Moreover, by our assumptions, it is plain 
that Ee n D is contained in any arbitrarily small neighborhood of K, provided 
e is small enough. 

Then let us set 
De = D\Ee ' Ke = D n bEe' 

Thus, for all sufficiently small e, De is a domain and bDe \Ke = bD\Ee is con-
nected, since so are D and bD\K, respectively. Therefore, by resorting to The-
orem 2.3, we infer that the global extension property holds for CR(bDe \Ke' W) 
for all sufficiently small e. 

The conclusion is then a consequence of the uniqueness of the extension of 
every CR-object. Q.E.D. 

3. THE ONE SIDE EXTENSION PROPERTY 

The last results of the previous section can be applied to the question of 
the one side extension property for the CR-objects defined on a piece of a real 
hypersurface of Cn (n ~ 2) . 

Let us consider a relatively closed real hypersurface S of an open set n ~ Cn • 
S is assumed to be connected, smooth of class C V (1 ~ v ~ 00) or of class C W 

and orientable; instead no regularity assumptions are made on its topological 
boundary S = Closc'(S)\S. 

Given a holomorphic complex vector bundle W on en , according to the 
previous sections we let CR(S, W) denote the set of the CR-objects with co-
efficients in W defined on S. Of course, in the present setting, as there exist 
global holomorphic trivializations of W, there is no loss of generality in think-
ing of W just as a complex vector space. 

By saying that the one side extension property holds for CR(S, W) we shall 
mean the following: There exists an open neighborhood U C Q of S such that 
U\S has two connected components U+, U- and every f E CR(S, W) is 
the boundary values, in the appropriate sense, of a unique holomorphic section 
FE r(U± ,&(W)); moreover, if f E CU(S, W), 0 ~ u ~ v, then F admits 
an extension of class C U to U± U S which coincides with f on S. 

In the first place let us prove 
Theorem 3.1. Suppose there is a (n - 2)-convex compact set E c en such that 

SeE, S c en\E . 
Then, for any W, the one side extension property holds for CR(S, W). 
Proof. We will prove that there is an open domain D ~ en with 

D c en\E , S c bD and bD\S c E . 
After that the thesis will be a straightforward consequence of Theorem 2.3, for 
K=bD\S. 

First of all we need to prove that 
(1) H 2n - 2(E,C) =0. 
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With the notation as in the proof of Theorem 2.3, we have 

H 2n- 2(E, C) = !i!!! H 2n- 2(UV ' C), 

769 

and hence (1) will follow if we show that, for every 1/, H 2n- 2(Uv ' C) vanishes. 
Let us consider first the case n = 2: in this case Uv is a Runge open set in C2 , 

and then the vanishing of H2 ( Uv ,C) follows from a known result on Runge 
domains in Cn (cf. [10, p. 58]). Next, assume that n ~ 3, and consider the 
following subcomplex 'W**(Uv ) of the complex W**(Uv ) of COO complex-
valued differential forms on Uv : 

'W·,q(Uv ) = zi,q(Uv ) ' 
if q < n - 2, 
ifq=n-2, { 

W·,q(Uv), 

0, if q > n - 2. 
Since Uv is (n - 2)-complete, a standard spectral sequences argument shows 
that the inclusion 'W**(Uv ) c W**(Uv ) induces an isomorphism on total 
cohomology. This implies in particular, on account of the Dolbeault and the 
De Rham isomorphisms, that there is a surjective continuous homomorphism 

H n- 2(U gn) _ H 2n- 2(U C) 
v' v' . 

On the other hand, since the homomorphism H n- 2(Cn , On) _ H n- 2(Uv ' On) 
induced by inclusion has a dense image (cf. the proof of Theorem 2.3), 
aHn- 2( Uv ' gn) vanishes. Hence H 2n - 2\ UV ' C) = (]H2n - 2( UV ' C) vanishes 
as well. This concludes the proof of (1). 

Now, (1) implies, via the cohomology sequence with compact supports 

... _ H 2n- 2(E, C) _ H;n-I(Cn\E, C) - H;n-I(Cn , C) -'" , 

that 
(2) 

Consider then the cohomology sequence with compact supports 
'" - H;n-I(Cn\E, C) - H;n-I(S, C) 

- H;n((Cn\E)\S, C) - Hc2n (Cn\E, C) - O. 

Here we have H;n(Cn\E, C) = C, because E does not disconnect Cn (see the 
discussion after Theorem 2.1), and H;n-I(S, C) = C, because S is connected 
and orientable. Therefore, due to (2), we get 

(3) H;n((Cn\E)\S, C) =C$c. 

Finally, (3) means that (Cn\E)\S is made by two connected components. 
Clearly, by the compactness of E uS, one of these components must be rela-
tively compact. This proves the existence of D. Q.E.D. 

In the same way as we derived Corollary 2.4 from Theorem 2.3, now we 
can derive from Theorem 3.1 the following other result relating to the one side 
extension property. 



770 GUIDO LUPACCIOLU 

Corollary 3.2. Suppose that there is a COO (n - 2)-plurisubharmonicfunction p 
on Cn such that 

s c {p = a}, S c {p > O}. 

Then, for any W, the one side extension property holds for CR(S, W). 

As the proof is essentially a repetition of that of Corollary 2.4, we dispense 
with it. 

It is worth while to point out that Corollary 3.2 implies the local exten-
sion theorems of Hans Lewy's type for CR-functions, CR-distributions and 
CR-hyperfunctions. Indeed we have 

Proposition 3.3. Let I: be a piece of a C2 regular hypersurface in Cn , and let 
zO E I: be a point where the Levi form is not degenerate. Then we can find an 
open neighborhood n ~ cn of zO in such a way that S = I: n n is a relatively 
closed connected hypersurface in n and the assumptions of Corollary 3.2 are 
fulfilled. 
Proof. Arguing as in [10, p. 51], we may assume that I: is a relatively closed 
hypersurface in an open neighborhood w of the origin 0, that zO = 0 and 
that I: is represented in w by an equation r(z I ' ... , zn) = 0, with r being 
of the form 

and All> O. 

I,n 

r == Im(z2) + 2: AjkZjZk + O(l zI 3) , 
j,k 

We claim that there is no loss of generality in assuming further that the 
binary Hermitian form I:;:~ AjkZjZk is positive definite. As a matter of fact, 
let s = exp(cr) - 1, which clearly is another defining function of I: for any 
constant c > 0 ; then, since 

after replacing r by s / c for c large enough, we have a defining function of I: 
with the asserted features. 

Now, since 

1,2 . 

r(zl' Z2' 0, ... ,0) == Im(z2) + 2: AjkZjZk + O(I(zl' Z2' 0, ... ,0)13 ) 
j,k 

and I:;: ~ A jk Z j Z k is positive definite, we can choose two small real numbers 
J > 0, e > 0 so that 
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r> 0 on the part of bQ where IZI12 + Izi = J and S = 1: n Q is connected 
and relatively closed in Q. Therefore we have: 

. n 2 2 
S=1:nbQC{ZEe: -Im(z2)+IZ31 +"'+Iznl =e}, 

S C {z E en: - Im(z2) + Izl + ... + Izl < e}. 

Then, since the function p = e + Im(z2) - IZ312 - ... - IZnl2 is a real-analytic 
(n - 2)-plurisubharmonic function on en , we conclude that S verifies the as-
sumptions of Corollary 3.2. Q.E.D. 

Thus Corollary 3.2 does imply the local extension theorems of Hans Lewy's 
type. On the other hand it trivially implies, for S = 0 and via the Hartogs the-
orem, the corresponding global extension theorems for the CR-objects defined 
on the boundary of a bounded domain of en. Therefore Corollary 3.2 can 
be considered as a proposition providing a unification of the local and global 
extension theorems in en . Another such unification, based on different ideas, 
has already been obtained previously by Fichera [7]. 

Actually we wonder if Corollary 3.2 could imply also a recent theorem of 
Trepreau [24] to the effect that the local one side extension property holds at a 
point zO E 1:, provided there are no germs of complex hypersurfaces passing 
through zO and contained in 1:. One should prove that the thesis of Proposi-
tion 3.3 is still true under this weaker assumption; however the matter seems 
to be rather complicated and we limit ourselves to notice that, at least in the 
case when n = 2 and 1: is smooth of class Coo, a proof could probably be 
developed along the same lines as in [5, Theorem 3.1.10]. 

4. GLOBAL EXTENSION ON UNBOUNDED DOMAINS OF en 
In this last section we discuss the following question. 
Given an unbounded domain D C en , n ~ 2 , with boundary bD connected 

and smooth of class CV , 1 ::; v ::; 00 , or of class CW , under which conditions 
does the global extension property hold for the CR-objects defined on bD? 

We have already considered this question in [15] for the case of continuous 
CR-functions; here, in view of the previous results of this paper, we are able to 
prove a quite more general theorem than that of [15]. 

Let us consider the hyperplane "at infinity" P: I of en , so that 

en = pn\P:-I. 
For every subset G c en , let us set 

G = Clospn(G); 

thus G is obtained by adding to G = Closcn (G) its points at infinity. 
With D being as above, we have 

Theorem 4.1. Suppose there exist q entire analytic hypersurJaces HI' ... , Hq 
oj en, 1::; q ::; n - 1 , so that - - -D n HI n ... n Hq = 0. 



772 GUIDO LUPACCIOLU 

Then, if W is any holomorphic complex vector bundle oj finite rank on pn , the 
global extension property holds Jor CR(bD, W). 
Proof. In the first place we observe that, since for an entire hypersurface H c 
en which is not algebraic one has H::J p;:1 (cf. [20]), the condition of the the-
orem enforces the algebraicity of at least one of the hypersurfaces HI ' ... , Hq ; 
moreover, if HI' ... , Hql, I ~ q' ~ q, are all the algebraic ones, for the same 
reason we have 

- - - n-I (D n HI n ... n Hql ) n p 00 = 0, 

which means that jj n HI n ... n Hql is a compact subset of en . Therefore, if 
q' < n - 1 , we can obviously choose n - 1 - q' further algebraic hypersurfaces 
H;'+I' '" , H~_I ' such that 

- - - -, -, 
DnHI n .. · nHq' nHql+1 n .. · nHn_ 1 = 0. 

Hence we may assume from the beginning that q = n - 1 and HI' ... , H n_ 1 
are all algebraic. 

Now, let us set 

M = pn\(HI n .. · n Hn_I ), K = jj n p;:-I . 
Clearly D ~ M and the boundary of D in M is made by bD = Bdcn (D) and 
by K. 

We will construct a sequence {uJ of COO strongly (n-2)-plurisubharmonic 
exhaustion functions on M such that 

00 

(*) {uy < O} 2) {u Y +I < O} for all v, and jj n n{uy < O} = K ; 
y=1 

the conclusion will then follow from Theorem 2.3 for E = n:, {u y < O}. 
Let ((0' ... , (n) be homogeneous coordinates in pn with p;:1 = go = O} 

and let 
FI((o,"" (n) = 0, ... , Fn_I((o'"'' (n) = 0 

be equations of HI' ... , Hn_ 1 ' respectively. After taking suitable powers, we 
may assume that FI , ••• ,Fn_ 1 have the same degree, r say. 

Consider the two real-analytic functions p, p: M ~ R defined by 

p 1(~12 
[(0' ... , (n] f-> 1F112 + ... + IFn_112' 

[ y Y ] P I (I(i + ... + l(nI 2)' + C 
'00' ••• ,'on f-> og 1F112 + ... + IFn_112 ' 

with C being a real constant such that K C {p < O} . 
Then set, for every positive integer v, 

uy=p+(l/v)p. 
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We claim that these functions have the asserted properties. As a matter of fact, 
let M j = M\{Fj = O}; j = 1, ... , n - 1, and consider the holomorphic maps 
fj: M j __ en- I given by 

f r 
[Co' ... , Cn] ~ (CofFj , FIfFj' ... , Fj_IfFj , Fj+IfFj , ... , Fn_IfF) , 

j = 1 , ... , n - 1 . Then on M j we have 

- r: - ( Izi 1 1 ) 88u" = j 88 2 2 + -log 2 . 2 
1+IZ21 +···+lzn_II v 1+lz21 +···+Izn-II 

+ .!.8810 (ICi + ... + ICn12)r 
v g wi 

hence we see that u" is strongly (n - 2)-plurisubharmonic on M j : so it is then 
on all of M, since M = U;,:-/ M j • Moreover u" is exhaustive, since so is 
p and p is bounded from below. Finally, the sequence {u,,} clearly verifies 
(*). Q.E.D. 

We conclude by observing that the assumption of Theorem 4.1, as is apparent 
from the first part of the proof, can be translated in the following way: There 
exist q polynomials PI' ... , Pq E C[ZI ' ... , Zn]' I ~ q ~ n - 1, oJrespective 
degrees r l ' ... , rq , so that 

Dc {z E en: IPI (z)1 2r/rl + ... + IPq (z)!2r/rq > (1 + IzI2)r}, 

with r being the least common multiple oj r l ' ... , rq • 

Remark added during revision. Recently a paper by B. J6ricke (Removable sin-
gularities oJCR-functions, Ark. Mat. 26 (1988), 117-143) appeared, which also 
deals with the global extension property of CR-functions from a part of the 
boundary of a relatively compact domain D. 

Joricke considers the case where D is a C2 -bounded strongly pseudocon-
vex domain in en and obtains some relevant results in this area by function-
theoretic techniques based on the KontinuiHitssatz. 
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