A spanning set for ${\scr C}(I^ n)$
HTML articles powered by AMS MathViewer
- by Thomas Bloom
- Trans. Amer. Math. Soc. 321 (1990), 741-759
- DOI: https://doi.org/10.1090/S0002-9947-1990-0984854-4
- PDF | Request permission
Abstract:
$\mathcal {C}({I^n})$ denotes the Banach space of continuous functions on the unit $n$-cube, ${I^n}$, in ${{\mathbf {R}}^n}$. Let $\{ {a^i}\}$, $i = 0,1,2, \ldots ,$, be a countable collection of $n$-tuples of positive real numbers satisfying ${\operatorname {lim}_i}a_j^i = + \infty$ for $j = 1, \ldots ,n$. We canonically enlarge the family of monomials $\{ {x^{{a^i}}}\}$ to a family of functions $\mathcal {F}(A)$. Conjecture. The linear span of $\mathcal {F}(A)$ is dense in $\mathcal {C}({I^n})$ if and only if $\Sigma _{i = 0}^\infty 1/\left | {{a^i}} \right | = + \infty$. For $n = 1$ this is equivalent to the Müntz-Szasz theorem. For $n > 1$ we prove the necessity in general and the sufficiency under the additional hypothesis that there exist constants $G$, $N > 1$ such that $\left | {{a^i}} \right | \leq G{\operatorname {exp}}({i^N})$ for all $i$.References
- Bo Berndtsson, Zeros of analytic functions of several variables, Ark. Mat. 16 (1978), no. 2, 251–262. MR 524753, DOI 10.1007/BF02385999
- Thomas Bloom, Kergin interpolation of entire functions on $\textbf {C}^{n}$, Duke Math. J. 48 (1981), no. 1, 69–83. MR 610176
- Len Bos and Thomas Bloom, On the convergence of Kergin interpolants of analytic functions, Approximation theory, IV (College Station, Tex., 1983) Academic Press, New York, 1983, pp. 369–374. MR 754362
- Philip J. Davis, Interpolation and approximation, Dover Publications, Inc., New York, 1975. Republication, with minor corrections, of the 1963 original, with a new preface and bibliography. MR 0380189
- A. O. Guelfond, Calcul des différences finies, Collection Universitaire de Mathématiques, XII, Dunod, Paris, 1963 (French). Traduit par G. Rideau. MR 0157139
- Paul Kergin, A natural interpolation of $C^{K}$ functions, J. Approx. Theory 29 (1980), no. 4, 278–293. MR 598722, DOI 10.1016/0021-9045(80)90116-1
- Jacob Korevaar and Simon Hellerstein, Discrete sets of uniqueness for bounded holomorphic functions $f(z,\,w)$, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 273–284. MR 0235150
- Charles A. Micchelli, A constructive approach to Kergin interpolation in $\textbf {R}^{k}$: multivariate $B$-splines and Lagrange interpolation, Rocky Mountain J. Math. 10 (1980), no. 3, 485–497. MR 590212, DOI 10.1216/RMJ-1980-10-3-485
- Charles A. Micchelli and Pierre Milman, A formula for Kergin interpolation in $\textbf {R}^{k}$, J. Approx. Theory 29 (1980), no. 4, 294–296. MR 598723, DOI 10.1016/0021-9045(80)90117-3
- Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142, DOI 10.1090/coll/019
- L. I. Ronkin, Certain questions of completeness and uniqueness for functions of several variables, Funkcional. Anal. i Priložen. 7 (1973), no. 1, 45–55 (Russian). MR 0316738 —, Discrete sets of uniqueness for entire functions of several variables of exponential type, Soviet Math. Dokl. 15 (1974), 1415-1419.
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 0344043
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 321 (1990), 741-759
- MSC: Primary 41A10; Secondary 32E30, 41A63
- DOI: https://doi.org/10.1090/S0002-9947-1990-0984854-4
- MathSciNet review: 984854