## Hyperbolicity properties of $C^ 2$ multi-modal Collet-Eckmann maps without Schwarzian derivative assumptions

HTML articles powered by AMS MathViewer

- by Tomasz Nowicki and Sebastian van Strien PDF
- Trans. Amer. Math. Soc.
**321**(1990), 793-810 Request permission

## Abstract:

In this paper we study the dynamical properties of general ${C^2}$ maps $f:[0,1] \to [0,1]$ with quadratic critical points (and not necessarily unimodal). We will show that if such maps satisfy the well-known Collet-Eckmann conditions then one has (a) hyperbolicity on the set of periodic points; (b) nonexistence of wandering intervals; (c) sensitivity on initial conditions; and (d) exponential decay of branches (intervals of monotonicity) of ${f^n}$ as $n \to \infty ;$ For these results we will not make any assumptions on the Schwarzian derivative $f$. We will also give an estimate of the return-time of points that start near critical points.## References

- P. Collet and J.-P. Eckmann,
*Positive Liapunov exponents and absolute continuity for maps of the interval*, Ergodic Theory Dynam. Systems**3**(1983), no. 1, 13–46. MR**743027**, DOI 10.1017/S0143385700001802
—, - John Guckenheimer,
*Sensitive dependence to initial conditions for one-dimensional maps*, Comm. Math. Phys.**70**(1979), no. 2, 133–160. MR**553966**, DOI 10.1007/BF01982351 - Ricardo Mañé,
*Hyperbolicity, sinks and measure in one-dimensional dynamics*, Comm. Math. Phys.**100**(1985), no. 4, 495–524. MR**806250**, DOI 10.1007/BF01217727 - W. de Melo and S. van Strien,
*A structure theorem in one-dimensional dynamics*, Ann. of Math. (2)**129**(1989), no. 3, 519–546. MR**997312**, DOI 10.2307/1971516 - MichałMisiurewicz,
*Absolutely continuous measures for certain maps of an interval*, Inst. Hautes Études Sci. Publ. Math.**53**(1981), 17–51. MR**623533**, DOI 10.1007/BF02698686 - Tomasz Nowicki,
*On some dynamical properties of $S$-unimodal maps on an interval*, Fund. Math.**126**(1985), no. 1, 27–43. MR**817078**, DOI 10.4064/fm-126-1-27-43 - Tomasz Nowicki,
*Symmetric $S$-unimodal mappings and positive Liapunov exponents*, Ergodic Theory Dynam. Systems**5**(1985), no. 4, 611–616. MR**829861**, DOI 10.1017/S0143385700003199 - Tomasz Nowicki,
*A positive Liapunov exponent for the critical value of an $S$-unimodal mapping implies uniform hyperbolicity*, Ergodic Theory Dynam. Systems**8**(1988), no. 3, 425–435. MR**961741**, DOI 10.1017/S0143385700004569 - T. Nowicki and S. van Strien,
*Absolutely continuous invariant measures for $C^2$ unimodal maps satisfying the Collet-Eckmann conditions*, Invent. Math.**93**(1988), no. 3, 619–635. MR**952285**, DOI 10.1007/BF01410202 - Sebastian van Strien,
*Smooth dynamics on the interval (with an emphasis on quadratic-like maps)*, New directions in dynamical systems, London Math. Soc. Lecture Note Ser., vol. 127, Cambridge Univ. Press, Cambridge, 1988, pp. 57–119. MR**953970**
—,

*Iterated maps on the interval as dynamical systems*, Birkhäuser, Boston, Mass., 1980.

*Hyperbolicity and invariant measures for general*${C^2}$

*interval maps satisfying the Misiurewicz condition*, Comm. Math. Phys. (to appear).

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**321**(1990), 793-810 - MSC: Primary 58F08; Secondary 58F13
- DOI: https://doi.org/10.1090/S0002-9947-1990-0994169-6
- MathSciNet review: 994169