Tiled orders of finite global dimension
HTML articles powered by AMS MathViewer
- by Hisaaki Fujita
- Trans. Amer. Math. Soc. 322 (1990), 329-341
- DOI: https://doi.org/10.1090/S0002-9947-1990-0968884-4
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 327 (1991), 919-920.
Abstract:
We define a projective link between maximal ideals, with respect to which an idealizer preserves being of finite global dimension. Let $D$ be a local Dedekind domain with the quotient ring $K$. We show that for $2 \leq n \leq 5$, every tiled $D$-order of finite global dimension in ${(K)_n}$ is obtained by iterating idealizers w.r.t. projective links from a hereditary order. For $n \geq 6$, we give a tiled $D$-order in ${(K)_n}$ without this property, which is also a counterexample to Tarsy’s conjecture, saying that the maximum finite global dimension of such an order is $n - 1$.References
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- Hisaaki Fujita, An idealizer with respect to a link between maximal ideals, Comm. Algebra 16 (1988), no. 5, 1053–1082. MR 926337, DOI 10.1080/00927878808823618
- K. R. Goodearl, Subrings of idealizer rings, J. Algebra 33 (1975), 405–429. MR 357510, DOI 10.1016/0021-8693(75)90110-6
- Vasanti A. Jategaonkar, Global dimension of triangular orders over a discrete valuation ring, Proc. Amer. Math. Soc. 38 (1973), 8–14. MR 309988, DOI 10.1090/S0002-9939-1973-0309988-4
- Vasanti A. Jategaonkar, Global dimension of tiled orders over a discrete valuation ring, Trans. Amer. Math. Soc. 196 (1974), 313–330. MR 349729, DOI 10.1090/S0002-9947-1974-0349729-3 E. Kirkman and J. Kuzmanovich, Global dimension of a class of orders, preprint, Wake Forest Univ., 1988.
- J. C. Robson, Idealizers and hereditary Noetherian prime rings, J. Algebra 22 (1972), 45–81. MR 299639, DOI 10.1016/0021-8693(72)90104-4
- Richard B. Tarsy, Global dimension of orders, Trans. Amer. Math. Soc. 151 (1970), 335–340. MR 268226, DOI 10.1090/S0002-9947-1970-0268226-3
- A. Wiedemann and K. W. Roggenkamp, Path orders of global dimension two, J. Algebra 80 (1983), no. 1, 113–133. MR 690707, DOI 10.1016/0021-8693(83)90021-2
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 322 (1990), 329-341
- MSC: Primary 16H05; Secondary 16E10
- DOI: https://doi.org/10.1090/S0002-9947-1990-0968884-4
- MathSciNet review: 968884