Unusually large gaps between consecutive primes
HTML articles powered by AMS MathViewer
- by Helmut Maier and Carl Pomerance
- Trans. Amer. Math. Soc. 322 (1990), 201-237
- DOI: https://doi.org/10.1090/S0002-9947-1990-0972703-X
- PDF | Request permission
Abstract:
Let $G(x)$ denote the largest gap between consecutive primes below $x$. In a series of papers from 1935 to 1963, Erdàs, Rankin, and Schànhage showed that \[ G(x) \geq (c + o(1)){\operatorname {log}}x{\operatorname {loglog}}x{\operatorname {loglogloglog}}x{({\operatorname {logloglog}}x)^{ - 2}}\], where $c = {e^\gamma }$ and $\gamma$ is Euler’s constant. Here, this result is shown with $c = {c_0}{e^\gamma }$ where ${c_0} = 1.31256 \ldots$ is the solution of the equation $4/{c_0} - {e^{ - 4/{c_0}}} = 3$. The principal new tool used is a result of independent interest, namely, a mean value theorem for generalized twin primes lying in a residue class with a large modulus.References
- N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors $>y$, Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951), 50–60. MR 0046375 H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. 2 (1936), 396-403. P. Erdàs, On the difference of consecutive primes, Quart. J. Math. Oxford Ser. 6 (1935), 124-128.
- P. X. Gallagher, A large sieve density estimate near $\sigma =1$, Invent. Math. 11 (1970), 329–339. MR 279049, DOI 10.1007/BF01403187
- H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, No. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1974. MR 0424730
- Henryk Iwaniec, On the problem of Jacobsthal, Demonstratio Math. 11 (1978), no. 1, 225–231. MR 499895
- A. F. Lavrik, The number of $k$-twin primes lying on an interval of a given length. , Soviet Math. Dokl. 2 (1961), 52–55. MR 0132055 S.-t. Lou and Q. Yao, On gaps between consecutive primes (to appear).
- Hugh L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR 0337847
- H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach’s problem, Acta Arith. 27 (1975), 353–370. MR 374063, DOI 10.4064/aa-27-1-353-370
- Karl Prachar, Primzahlverteilung, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 0087685 R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 13 (1938), 242-247.
- R. A. Rankin, The difference between consecutive prime numbers. V, Proc. Edinburgh Math. Soc. (2) 13 (1962/63), 331–332. MR 160767, DOI 10.1017/S0013091500025633
- Arnold Schönhage, Eine Bemerkung zur Konstruktion grosser Primzahllücken, Arch. Math. (Basel) 14 (1963), 29–30 (German). MR 146154, DOI 10.1007/BF01234916
- Daniel Shanks, On maximal gaps between successive primes, Math. Comp. 18 (1964), 646–651. MR 167472, DOI 10.1090/S0025-5718-1964-0167472-8
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 322 (1990), 201-237
- MSC: Primary 11N05; Secondary 11N35
- DOI: https://doi.org/10.1090/S0002-9947-1990-0972703-X
- MathSciNet review: 972703