The diffeotopy group of the twisted $2$-sphere bundle over the circle
HTML articles powered by AMS MathViewer
- by M. Ho Kim and Frank Raymond
- Trans. Amer. Math. Soc. 322 (1990), 159-168
- DOI: https://doi.org/10.1090/S0002-9947-1990-0991965-6
- PDF | Request permission
Abstract:
The diffeotopy group of the nontrivial $2$-sphere bundle over the circle is shown to be isomorphic to ${\mathbb {Z}_2} \oplus {\mathbb {Z}_2}$. The first generator is induced by a reflection across the base circle, while a second generator comes from rotating the $2$-sphere fiber as one travels around the base circle. The technique employed also shows that homotopic diffeomorphisms are diffeotopic.References
- M. A. Armstrong, Lifting homotopies through fixed points, Proc. Roy. Soc. Edinburgh Sect. A 93 (1982/83), no.ย 1-2, 123โ128. MR 688291, DOI 10.1017/S0308210500031723
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- David Gabai and William H. Kazez, The classification of maps of nonorientable surfaces, Math. Ann. 281 (1988), no.ย 4, 687โ702. MR 958265, DOI 10.1007/BF01456845
- Herman Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308โ333. MR 146807, DOI 10.1090/S0002-9947-1962-0146807-0
- Allen E. Hatcher, A proof of the Smale conjecture, $\textrm {Diff}(S^{3})\simeq \textrm {O}(4)$, Ann. of Math. (2) 117 (1983), no.ย 3, 553โ607. MR 701256, DOI 10.2307/2007035
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362
- Sze-tsen Hu, Concerning the homotopy groups of the components of the mapping space $Y^{S^{p}}$, Nederl. Akad. Wetensch., Proc. 49 (1946), 1025โ1031 = Indagationes Math. 8, 623โ629 (1946). MR 19920
- Myung Ho Kim, Sadayoshi Kojima, and Frank Raymond, Homotopy invariants of nonorientable $4$-manifolds, Trans. Amer. Math. Soc. 333 (1992), no.ย 1, 71โ81. MR 1028758, DOI 10.1090/S0002-9947-1992-1028758-1
- James R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975. MR 0464128
- J. H. Rubinstein, On $3$-manifolds that have finite fundamental group and contain Klein bottles, Trans. Amer. Math. Soc. 251 (1979), 129โ137. MR 531972, DOI 10.1090/S0002-9947-1979-0531972-6
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
- Yoko Tao, On fixed point free involutions of $S^{1}\times S^{2}$, Osaka Math. J. 14 (1962), 145โ152. MR 140092
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 322 (1990), 159-168
- MSC: Primary 57R50; Secondary 57N10
- DOI: https://doi.org/10.1090/S0002-9947-1990-0991965-6
- MathSciNet review: 991965