The fixed point theorem in equivariant cohomology
HTML articles powered by AMS MathViewer
- by J. D. S. Jones and S. B. Petrack
- Trans. Amer. Math. Soc. 322 (1990), 35-49
- DOI: https://doi.org/10.1090/S0002-9947-1990-1010411-X
- PDF | Request permission
Abstract:
In this paper we study the ${S^1}$-equivariant de Rham cohomology of infinite dimensional ${S^1}$-manifolds. Our main example is the free loop space $LX$ where $X$ is a finite dimensional manifold with the circle acting by rotating loops. We construct a new form of equivariant cohomology $h_T^*$ which agrees with the usual periodic equivariant cohomology in finite dimensions and we prove a suitable analogue of the classical fixed point theorem which is valid for loop spaces $LX$. This gives a cohomological framework for studying differential forms on loop spaces and we apply these methods to various questions which arise from the work of Witten [16], Atiyah [2], and Bismut [5]. In particular we show, following Atiyah in [2], that the $\hat A$-polynomial of $X$ arises as an equivariant characteristic class, in the theory $h_T^*$, of the normal bundle to $X$, considered as the space of constant loops, in $LX$.References
- Ralph Abraham, Jerrold E. Marsden, and Tudor S. Raţiu, Manifolds, tensor analysis, and applications, Global Analysis Pure and Applied: Series B, vol. 2, Addison-Wesley Publishing Co., Reading, Mass., 1983. MR 697563
- M. F. Atiyah, Circular symmetry and stationary-phase approximation, Astérisque 131 (1985), 43–59. Colloquium in honor of Laurent Schwartz, Vol. 1 (Palaiseau, 1983). MR 816738
- M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), no. 1, 1–28. MR 721448, DOI 10.1016/0040-9383(84)90021-1
- Nicole Berline and Michèle Vergne, Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J. 50 (1983), no. 2, 539–549 (French). MR 705039
- Jean-Michel Bismut, Index theorem and equivariant cohomology on the loop space, Comm. Math. Phys. 98 (1985), no. 2, 213–237. MR 786574
- J.-M. Bismut, Localization formulas, superconnections, and the index theorem for families, Comm. Math. Phys. 103 (1986), no. 1, 127–166. MR 826861 J. J. Duistermatt and G. J. Heckmann, On the variation in the cohomology of the symplectic form on the reduced phase space, Invent. Math. 93 (1981), 139-149.
- Ezra Getzler, John D. S. Jones, and Scott B. Petrack, Loop spaces, cyclic homology and the Chern character, Operator algebras and applications, Vol. 1, London Math. Soc. Lecture Note Ser., vol. 135, Cambridge Univ. Press, Cambridge, 1988, pp. 95–107. MR 996442, DOI 10.1016/0308-0161(88)90044-0 E. Getzler, J. D. S. Jones and S. B. Petrack, Differential forms on loop spaces and the cyclic bar construction, Topology (to appear).
- Thomas G. Goodwillie, Cyclic homology, derivations, and the free loopspace, Topology 24 (1985), no. 2, 187–215. MR 793184, DOI 10.1016/0040-9383(85)90055-2
- John D. S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), no. 2, 403–423. MR 870737, DOI 10.1007/BF01389424
- John D. S. Jones and S. B. Petrack, Le théorème des points fixes en cohomologie équivariante en dimension infinie, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 2, 75–78 (French, with English summary). MR 929113
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554
- Varghese Mathai and Daniel Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986), no. 1, 85–110. MR 836726, DOI 10.1016/0040-9383(86)90007-8 C. Taubes, On the cohomology of elliptic genera, Preprint, Harvard University, 1987.
- Edward Witten, Supersymmetry and Morse theory, J. Differential Geometry 17 (1982), no. 4, 661–692 (1983). MR 683171
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 322 (1990), 35-49
- MSC: Primary 58A10; Secondary 55N35, 55N91, 58A12
- DOI: https://doi.org/10.1090/S0002-9947-1990-1010411-X
- MathSciNet review: 1010411