The crank of partitions mod $8,\;9$ and $10$
HTML articles powered by AMS MathViewer
- by Frank G. Garvan
- Trans. Amer. Math. Soc. 322 (1990), 79-94
- DOI: https://doi.org/10.1090/S0002-9947-1990-1012520-8
- PDF | Request permission
Abstract:
Recently new combinatorial interpretations of Ramanujan’s partition congruences modulo $5$, $7$ and $11$ were found. These were in terms of the crank. A refinement of the congruence modulo $5$ is proved. The number of partitions of $5n + 4$ with even crank is congruent to $0$ modulo $5$. The residue of the even crank modulo $10$ divides these partitions into five equal classes. Other relations for the crank modulo $8$, $9$ and $10$ are also proved. The dissections of certain generating functions associated with these results are calculated. All of the results are proved by elementary methods.References
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- George E. Andrews and F. G. Garvan, Ramanujan’s “lost” notebook. VI. The mock theta conjectures, Adv. in Math. 73 (1989), no. 2, 242–255. MR 987276, DOI 10.1016/0001-8708(89)90070-4
- George E. Andrews and F. G. Garvan, Dyson’s crank of a partition, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 2, 167–171. MR 929094, DOI 10.1090/S0273-0979-1988-15637-6
- A. O. L. Atkin and P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84–106. MR 60535, DOI 10.1112/plms/s3-4.1.84
- Anthony J. F. Biagioli, A proof of some identities of Ramanujan using modular forms, Glasgow Math. J. 31 (1989), no. 3, 271–295. MR 1021804, DOI 10.1017/S0017089500007850
- B. J. Birch, A look back at Ramanujan’s notebooks, Math. Proc. Cambridge Philos. Soc. 78 (1975), 73–79. MR 379372, DOI 10.1017/S0305004100051501 F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10-15.
- Freeman J. Dyson, Missed opportunities, Bull. Amer. Math. Soc. 78 (1972), 635–652. MR 522147, DOI 10.1090/S0002-9904-1972-12971-9 —, A walk through Ramanujan’s garden, Ramanujan Revisted: Proc. of the Centenary Conference, Univ. of Illinois at Urbana-Champaign, June 1-5, 1987, Academic Press, San Diego, 1988.
- Freeman J. Dyson, Mappings and symmetries of partitions, J. Combin. Theory Ser. A 51 (1989), no. 2, 169–180. MR 1001259, DOI 10.1016/0097-3165(89)90043-5 F. G. Garvan, Some congruence properties of the partition function, M. Sc. thesis, University of New South Wales, 1982.
- F. G. Garvan, New combinatorial interpretations of Ramanujan’s partition congruences mod $5,7$ and $11$, Trans. Amer. Math. Soc. 305 (1988), no. 1, 47–77. MR 920146, DOI 10.1090/S0002-9947-1988-0920146-8 —, Combinatorial interpretations of Ramanujan’s partition congruences, Ramanujan Revisted: Proc. of the Centenary Conference, Univ. of Illinois at Urbana-Champaign, June 1-5, 1987, Academic Press, San Diego, 1988.
- Frank Garvan, Dongsu Kim, and Dennis Stanton, Cranks and $t$-cores, Invent. Math. 101 (1990), no. 1, 1–17. MR 1055707, DOI 10.1007/BF01231493
- Frank Garvan and Dennis Stanton, Sieved partition functions and $q$-binomial coefficients, Math. Comp. 55 (1990), no. 191, 299–311. MR 1023761, DOI 10.1090/S0025-5718-1990-1023761-1 G. H. Hardy and E. M. Wright, An Introduction to the theory of numbers, Oxford Univ. Press, London, 1968.
- Dean Hickerson, A proof of the mock theta conjectures, Invent. Math. 94 (1988), no. 3, 639–660. MR 969247, DOI 10.1007/BF01394279
- Dean Hickerson, A proof of the mock theta conjectures, Invent. Math. 94 (1988), no. 3, 639–660. MR 969247, DOI 10.1007/BF01394279
- M. D. Hirschhorn, A simple proof of an identity of Ramanujan, J. Austral. Math. Soc. Ser. A 34 (1983), no. 1, 31–35. MR 683175, DOI 10.1017/S1446788700019728
- Michael D. Hirschhorn, A generalisation of Winquist’s identity and a conjecture of Ramanujan, J. Indian Math. Soc. (N.S.) 51 (1987), 49–55 (1988). MR 988308
- M. D. Hirschhorn, A birthday present for Ramanujan, Amer. Math. Monthly 97 (1990), no. 5, 398–400. MR 1048912, DOI 10.2307/2324390 —, private communication. F. Klein and R. Fricke, Vorlesungen über die Theorie der elliptischen Modulfunktionen, Vol. 2, Teubner, Leipzig, 1892.
- I. G. Macdonald, Affine root systems and Dedekind’s $\eta$-function, Invent. Math. 15 (1972), 91–143. MR 357528, DOI 10.1007/BF01418931 S. Ramanujan, Some properties of $p(n)$, the number of partitions of $n$, Paper $25$ of Collected Papers of S. Ramanujan, Cambridge Univ. Press, London and New York, 1927; reprinted: Chelsea, New York, 1962.
- Srinivasa Ramanujan, The lost notebook and other unpublished papers, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988. With an introduction by George E. Andrews. MR 947735 Ø. Rødseth, Dissections of the generating functions of $q(n)$ and ${q_0}(n)$, Univ. Bergen Årb. Naturv. Serie 1969, No 13.
- Dennis Stanton, Sign variations of the Macdonald identities, SIAM J. Math. Anal. 17 (1986), no. 6, 1454–1460. MR 860926, DOI 10.1137/0517103
- Frederick M. Goodman and Kathleen M. O’Hara, On the Gaussian polynomials, $q$-series and partitions (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 18, Springer, New York, 1989, pp. 57–66. MR 1019842, DOI 10.1007/978-1-4684-0637-5_{5} G. N. Watson, Proof of certain identities in combinatory analysis, J. Indian Math. Soc. 20 (1933), 57-69.
- Lasse Winquist, An elementary proof of $p(11m+6)\equiv 0\,(\textrm {mod}\ 11)$, J. Combinatorial Theory 6 (1969), 56–59. MR 236136, DOI 10.1016/S0021-9800(69)80105-5
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 322 (1990), 79-94
- MSC: Primary 11P83; Secondary 05A17, 11P81
- DOI: https://doi.org/10.1090/S0002-9947-1990-1012520-8
- MathSciNet review: 1012520