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VARIETIES OF GROUP REPRESENTATIONS AND CASSON'S

INVARIANT FOR RATIONAL HOMOLOGY 3-SPHERES

S. BOYER AND A. NICAS

Abstract. Andrew Casson's Z-valued invariant for Z-homology 3-spheres is

shown to extend to a Q-valued invariant for Q-homology 3-spheres which is

additive with respect to connected sums. We analyze conditions under which

the set of abelian SL2(C) and SU(2) representations of a finitely generated

group is isolated. A formula for the dimension of the Zariski tangent space

to an abelian SL2(C) or SU(2) representation is obtained. We also derive

a sum theorem for Casson's invariant with respect to toroidal splittings of a

Z-homology 3-sphere.

Andrew Casson's lectures at MSRI in the spring of 1985 introduced an in-

teger valued invariant of oriented integral homology 3-spheres. This invariant,

constructed by means of representation spaces, yields interesting new results

in low dimensional topology. In this paper we examine the extent to which

Casson's procedure for defining his invariant can be used to obtain a rational

valued invariant for oriented rational homology 3-spheres.

Let n be a finitely generated group and G a Lie group. It is well known

that the set R(n, G) of all homomorphisms of n into G can be given the

structure of an analytic set in a natural manner. If G is an algebraic group,

R(n, G) becomes an algebraic set. The closed subspace of R(n, G) consisting

of representations n —«• G with abelian image will be denoted by A(n, G). Let

R"(n, G) be the union of those components of R(n, G) which do not meet

A(n , G). When G is understood from the context, it will be dropped from the

notation.

If R is a commutative ring, an /?-homology 3-sphere is a closed, orientable

(over Z) 3-manifold with homology isomorphic to Hf(S ; R). Let H(R) be

the set of oriented homeomorphism types of oriented Ä-homology 3-spheres.

For M g H(Z) Casson defined an integer valued invariant X(M). We briefly

recall his definition (see [AM] for a comprehensive exposition of Casson's MSRI

lectures). Let M = lVxuF W2 be a Heegard decomposition of M, where

F = dW. is of genus g and let F* be F punctured once. The diagram of
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inclusions:
W

f*^f{   1s\m

^w2/

induces a corresponding diagram of spaces of SU(2) representations:

R(nxM)(^ )R(7txF)^R(nxFf.
^RinxW2)/

Let

ß, = image of R(nx WA) in R* = R(nxF*),

R = image of R(nxF) in R*,

Ai = image of A{nx WA) in R*,

A = image of A(nxF) in R*.

R- A is an open manifold on which SU(2) /center acts freely by conjugation.

Let

R = R - A modulo action by conjugation,

Q, = Q, - Ai modulo action by conjugation.

The Q¡ embed properly in R and their intersection is compact. The orienta-

tion of M can be used to determine an orientation of Qi, R*, Ö,, and R.

Let (Qx, Q2)R- be the homological intersection number of the compact mani-

folds Qx and Q2 in R*. Casson proves that an algebraic intersection number

(öi j QiÏr can be defined. His invariant is given by

Definition.

k(M) = (-lf(Qx,Q2)-/2(Qx,Qf)R..

Casson proves that this number is an integer and is independent of the Heegard

decomposition of M. A key point in Casson's theory is that for M e H(Z),

the trivial representation is an isolated point in R(nxM, SU(2)) ; it is this fact

that allows him to conclude that Qx (~)Q2 is compact and thus making it possible

to define the intersection number (Qx, Qfi-j,-

Let

R(nxM) = image of R(nxM) - A(nxM) in R* modulo action by conjugation,

R."(nxM) = image of Rn(nxM) in R* modulo action by conjugation.

R(nxM) may fail to be compact; however, R"(nxM) is compact and is in

fact the union of the compact components of R(nxM). Our starting point is

the observation that Casson's procedure for defining the intersection number

(öi > 02)0 remains valid for an M e H(Q) provided one restricts attention to

the compact components of Qx n Q2 = R(nxM). Using this interpretation of
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(öi > ö2)^> we can now define X(M) for any M e H(Q) as in the Z-homology

sphere case. A routine homology computation reveals that (Qx, Q2)R- =

± order of HX(M). Thus in general, k(M) will be a rational number. Casson's

arguments immediately extend to show that k(M) remains independent of the

Heegard decomposition and that the property k(-M) = -k(M) is retained.

The above definition raises the question: When is R(nxM) = Rn(nxM)r!

This occurs precisely when n = nxM satisfies

Property A.  A(n, SU(2)) is a union of components of R(n, SU(2)).

We will be interested in conditions on M which imply that Property A holds

for nxM. This motivates the next definition and result.

Definition. A finitely generated group n is cyclically finite (CF) if each normal

subgroup with finite cyclic quotient, other than the ones of maximal even index

(on which there is no condition), has finite abelianization.

Theorem A. Let n be a finitely generated group with finite abelianization. Then

it is CF if and only if A(n, SL2(C)) is a union of components of R(n, SL2(C)).

Theorem A is a consequence of the more general result, Theorem 1.1, which

is the computation of the dimension of the Zariski tangent space to an abelian

representation p:n -* SL2(C) where n is an arbitrary finitely generated group

and p has finite image. Since SU(2) is included as a Lie subgroup of SL2(C)

Theorem A implies the following:

Theorem B. Let M G H(Q) be such that nxM is CF. Then nxM satisfies

Property A.

Many 3-manifold groups are CF; for example, any nonzero Dehn surgery on

a knot in a Z-homology 3-sphere whose Alexander polynomial has no roots of

unity as zeros result in a manifold whose fundamental group is CF.

Another condition that implies that Property A holds for n{M, M G H(Q)

can be deduced from Bass' SL2(C) subgroup theorem. A closed 3-manifold will

be called not sufficiently large, abbreviated NSL, if it is irreducible and contains

no orientable incompressible surface of positive genus.

Theorem C. Suppose M e H(Q) is NSL. Then nxM satisfies Property A.

We show by example that the hypotheses of these two theorems are indepen-

dent; furthermore, we produce an irreducible, atoroidal M e H(Q) which does

not satisfy the hypothesis of either.

In general the free product of two groups with Property A will not have

Property A; however, we prove

Theorem. Suppose M G H(Q) is a connected sum M = MX#M2. Then nxM

has Property A if and only if both nxMx and nxM2 have Property A and at least

one of HX(MA) i = 1, 2 is a Z/2 vector space.
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Suppose M G H(Q) decomposes as a connected sum M = MX#M~,. When

M G H(Z), results of Casson imply that k(M) = k(M{) + k(Mf). Our general-

ized invariant is also additive with respect to connected sums.

Theorem D. Let MX,M2G H(Q). Then k(Mx#M2) = k(Mf + k(Mf).

Now consider an M e H(Z), which splits along an embedded torus, i.e.,

M = Mx U M2 where dMx = dM2 = S x S . Each dM■ can be canonically

identified with d(Sl x D2) and thus there is a well-defined "closure" M   =

Mj U (S1 x D2) G H(Z).

Theorem E.  k(M) = k(Mx) + k(Mf).

A more general formula for arbitrary (noncanonical) "closures" follows easily

from Theorem E and Casson's Dehn surgery formula. Theorem E has been

independently discovered by Akbulut and McCarthy (private communication)

and by Fukuhara and Maruyama [FM]. Suppose M e H{Q) is prime. Then by

results of Jaco and Shalen [JS] and Johannson [Jo], M has a canonical torus

decomposition M = \Ji M¡ and we define

X(M) = X>(M,).
i

Theorem E implies that for M e H(Z), J(M) = k(M).

This study suggests a number of interesting problems and open questions,

some of which have been included in the subsequent sections.

1

Throughout this section all representation spaces should be understood to

consist of SL2(C) representations.

Let n be a finitely generated group and suppose p e A(n) has finite image.

This image is necessarily finite cyclic, say image (p) = Cr,  r > 1.   As the

adjoint representation Ad : SL2(C) —► Aut(sl2(C)) has kernel {±/}, Adop has

image Cn where

( r       if r is odd,
n = {

( r/2   otherwise.

For each d\n , let 4^: Cn -» Cd be the surjection T'd(x) = x"1 (the group law

in Cn will be written multiplicatively). Define the homomorphism %d to be

the composite:
Kàop „

71 ->       Cn

Xd

ca
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Set nd = kernel(xd) and let bx(nd) denote the rank of the abelianization of

nd.

Consider a field k. If V is a k-vector space and a:n —> End/t(F) a rep-

resentation, we will use the notation Va for the fc[7r]-module V. The jih

cohomology of n over k with coefficients in Va will be denoted HJ(n; Vf) or

simply HJ(n; a) when V is clear from the context. Define

bJ(n;Va) = b](n;a) = dimkHJ(n;Va).

The first result of this section is the calculation of bx(n; Ad op) and of the

dimension of T , the Zariski tangent space of R(n) at p (see §1A of [Mu]) in

terms of the numbers bx (nd).

Let p, tp:Z+ —> Z be the Möbius and Euler functions [HW, Chapter XVI].

(1.1)    Theorem.

(i)   bx(n; Ad op) = bx(n) + ^¡-)Y.dlnPin/d)bx(nd).

(ii) If Z(p) denotes the centralizer of p(n)  in SL2(C), then dimc T   =

3 - dimcZ(p) + bx(n) + ^ £rf|„ ßin/d)bx(nd).

Proof. We prove (i) first.

It is easy to verify that Ad op splits as the sum of three 1-dimensional rep-

resentations, two with image Cn plus the trivial representation. Let ß:n -> S1

be one of the former.    For each d\n  and j G Z define  ßd:n -> S    by

ßJd(x) = ß(x)nj/d . Then

(1.1) (i)    si2(C)Mop = cßl®cK®cßr,

(1.2) (h)   C[Cd]x^®CßJ
7 = 1

(1.3) (ü)     fore\d,  ßd = ßd/e.

According to the isomorphism (1.1),

(1.4) bx(n; Adop) = bx(n; ßl) + bx(n; ß[n) + bx(7i; ß"n-').

To compute the right-hand side of this equation we note that by Shapiro's

Lemma [Br, p. 73]

d

bx(nd) = bx(n; C[n/nd]) = bfr ; QCJ.J = £>,(*; #)
7 = 1

by (1.2). But if ;' and k have the same order in Z/d, then bx(n; ß'f) =

bx(n; ßd). This is true because for any / e Z, bx(n; C„¡) = bx(n; Q[CL/)

where Ç is a primitive dih root of unity and the fact that there is a Galois
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automorphism of Q[£]/Q which induces a ^-module automorphism Q[ÍL, =
^d

Q[CL* . Thus we may write
Pd

bx(nd) = Y<P^)bxin;ßdJe)
e\d

= Y<Pie)bx(n; ßl)
e\d

by (1.3). Now this equation holds for each d\n so by the Möbius inversion

formula [HW, Chapter XVI],

e\d

In particular bx(n; ßx) = bx(n) and

bx(n; ß"-1) = bx(n;ß!n) = -¡-^nin/d^in,).

V{    '  d\n

Plugging these values into equation (1.4) completes the proof of (i).

To deduce (ii), we use the identity

dimc T = 3 - dimcZ(p) + dimcH (n; Ad op)

(compare with §2 of [Go]) and apply (i).    D

( 1.2) Remarks, (i) Similar techniques to those used in the preceding proof can

be used to calculate bx (n ; Ad op), and therefore dimc T , at any representation

p G R(n) having finite image.

(ii) The conclusions of Theorem 1.1 hold when SL2(C) is replaced by SU(2)

and dimensions are taken over R ; the calculation is formally identical.

(1.3) Definition. An element p e R(n) is called rigid if it has a neighborhood

in R(n) consisting entirely of conjugates of p .

André Weil [W, §3] has shown that p G R(n) is rigid as long as

H\n;sl2(C)Mop) = 0;

that is, as long as bx (n ; Ad op) = 0 .

Proof of Theorem A. First we assume that n is CF.

Let p G A(n) be arbitrary. As bx (n) = 0, p has a finite image and so we may

calculate 6,(7r;Adop) by Theorem (1.1 )(i). Since n is CF, this identity shows

bx(n ; Ad op) = 0. By [W], p is rigid and therefore has an jR(7t)-neighborhood

lying entirely in A(n). It follows that A(n) is both open and closed in R(n)

and hence is a union of components of R(n).

Now assume that A(n) is a union of components of R(n). Since R(n) is lo-

cally connected, A(n) is open in R(n) ; furthermore, A(n), being an algebraic

set, is a finite union of components of R(n) [Mi, Appendix A]. The hypothesis

that bx(n) = 0 implies that A(it) is a finite union of SL2(C)-orbits, each closed
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(and therefore open) in R(n). It follows that the component of R(n) contain-

ing a particular p e R(n) is homeomorphic to the manifold SL2(C)/Z(p). As

in the remark on p. 13 of [Mi], we have

dimc T = dimc SL2(C)/Z(p) = 3 - dimc Z(p)

(it is at this point our argument breaks down if SL2(C) is replaced by SU(2)).

Comparing this last equation with Theorem (1.1) (ii) shows that for each p e

A(n) with associated n > 1 and nd ç n , d\n , defined as above,

(1.5) Ytiin/d)M*d) = Q-
d\n

To prove n is CF we must show bx(ri) = 0 for ri < n such that n/ri =

Cn (n > 1) and for which there is a subgroup 7r" of ri with ri' < n and

7t/7t" = Cr, where

n     if « is odd,

2n   otherwise.

We do this by inducting on n .

The case n = 1 is handled by our hypothesis that bx(n) = 0. Assume

n > 1 and that the result is known for all d < n . Given ri as above, define a

homomorphism p G A(n) as the composition

7T —» n/n   —» SL2(C).

According to (1.5),

0 = Y,Mn/d)bx(nd) = bx(nn)
d\n

by the inductive hypothesis. But nn = ri, so bx(ri) = 0 and the induction is

complete.

This finishes the proof of Theorem A.   D

The following lemma provides a general criterion for recognizing 3-manifolds

whose groups are CF.

(1.4) Lemma. Suppose K is a smooth knot in some M e H(Z) and let K(r/s)

denote the result of an (r/s) Dehn surgery of M along K. Then for r f 0,

nx(K(r/s)) is CF if and only if AK(t), the Alexander polynomial of K , has no

nth root of unity as a zero. Here n = r/2 or r depending on whether r is even

or odd.

Proof. Since Hx(K(r/s)) = Cr, the cyclic covers of K(r/s) correspond to the

set of positive divisors of r, each such d producing a «i-fold cyclic cover

Nd —» K(r/s). Let Md be the i/-fold branched cyclic cover M, branched
along K . It may be shown

Hx(Nd) = HxiMd)®Crld.

As \Hx(Md)\ = ±if   AK(e2nlj/d) [BZ, Theorem 8.21], the lemma follows.   □

-
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According to Theorem B, nx(K(r/s)) has Property A for those knots K

and nonzero integers r satisfying the hypotheses of the preceding lemma. For

instance, if K ç. S is the figure-eight knot, nx(K(r/s)) has Property A for all

r t¿ 0. If K is the trefoil knot, nx(K(r/s)) has Property A for all r/s except

those with r = 0 (mod 6), r ^ ±6 . Finally, it can be shown using Lemma ( 1.4)

that nx(M) has Property A for any M e H(Q) whose first homology group is

cyclic of prime power order.

In this section we prove Theorem C and provide examples illustrating its

relationship to Theorem B.

Theorem C. Suppose M e H(Q) is NSL. Then nx(M) satisfies Property A.

Proof. Since M is not sufficiently large, n = nx (M) cannot be written as a non-

trivial free product with amalgamation [Sh, Proposition 4]. According to Bass

[Ba, Corollary 3], there are only finitely many GL2(C)-orbits in R(n, GL2(C)).

Hence, by [Wo, Lemma 4.7.1], R(n, SU(2)) is a finite union of SU(2)-orbits.

Each such orbit is both open and closed in R(n, SU(2)) and so A(n, SU(2))

is a union of components of this space. Thus 7t satisfies Property A.   D

The core of this proof is the GL2(C) subgroup theorem of Bass. For the

convenience of the reader we provide an elementary and brief account of how

this result implies R(n, SU(2)) consists of only finitely many SU(2) orbits.

The set R(n) = R(n, SU(2))/ conjugation is a compact, semialgebraic set [B]

and as such admits a finite triangulation [Hi]. As noted above, the hypotheses

on M imply that bx(n) = 0 and n is not a nontrivial free product with

amalgamation. According to [Ba], each element of R(n, SU(2)) is conjugate

in GL2(C) to a homomorphism p whose image lies in one of

m is a root of unity > ,(i)

or

(ii) SL2(/4) for some ring of algebraic integers A.

In the first case p has abelian image and thus, up to conjugation, is one of only

finitely many possibilities. In the second case, the fact that the algebraic closure

of Q is countable implies that there are only countably many possibilities for

p up to conjugation. Two SU(2) representations are conjugate over GL2(C)

if and only if they are conjugate over SU(2) [Wo, Lemma 4.7.1] and thus

the compact polyhedron R(n) is countable. It is therefore finite and hence

/?(7T,SU(2)) consists of finitely many SU(2) orbits.

(2.1) Examples. Consider the figure-eight knot K ç S3. According to the

remarks at the end of §1, K(4), the +4 Dehn surgery of S along K , has a

group which is CF. On the other hand, Thurston [T, §4.11] shows that K(4) is

Haken. Thus for M e H(Q), nx(M) being CF does not imply M is NSL.
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Next let K be the trefoil knot and consider AX 12). By [Mo], this is a Seifert

fiber space with three singular fibers and orbit S2. By Theorem VI. 15 of [Ja],

K(12) is NSL. But as noted in §1, nx(K(l2)) is not CF. Hence for M e//(Q),

M being NSL does not imply nx(M) is CF.

Finally we show that the conditions nX(M) being CF or M being NSL do

not exhaust  H(Q).   Using the notation of [Oe], we take K  to be the star

knot K i -§) Ç s3 This knot has Alexander polynomial AK(t)
3 >  3 '      3'

(t2-t+l)(2-5t + 2t2) and so, by Lemma (1.4), nx(K(l2)) is not CF. Further,

by Corollary (4b) of [Oe], K(12) is Haken and therefore is not NSL. This is

the desired example.

(2.2) Remark. Let K be as in the last example. By considering the manifold

K(l2/s), s > 0, we can show there is a manifold M e H(Q), such that M is

not NSL, nx(M) is not CF, and M is atoroidal (compare §3).

In the proof of Theorem C we noted that if M is NSL, then R(nx(M), SU(2))

is the union of a finite number of SU(2) orbits. Casson's invariant for M e

H(Z) gives an algebraic count of one-half the number of the orbits correspond-

ing to irreducible representations. It is natural then to ask whether or not this

is an exact count when M is NSL. Consider the following example. Let K be

the (p, q) torus knot. When r/s ± 0, pq, K(r/s) is NSL (see [Mo and Ja,

Theorem VI. 15]).

If m, n G Z are chosen to satisfy pm - qn = 1,

presentation (x, y \ xq = yp) where K has meridian p

then nx(S \K)  has a

" and preferred
m   -

x y

longitude k = x (x y
m   —ns—pq

. Then

nx(K(r/s)) = (x,y\xq = yp,pks = e).

It follows that the set of irreducible SU(2)-representations of nx(K(r/s)) cor-

responds bijectively to

{(a,b) \[a,b]¿e,aq = b" = ee,e = ±l, (amb~")r~spq

c SU(2) x SU(2).

= £ e]

Let S\ = {u\ lm(u) >0}cS' and let D = {(«, v) \ uq = vp = e e {±1}} ç

S+ x S+ . It can be shown that the set of conjugacy classes of irreducible SU(2)

representations of nx(K(r/s)), R(nx(K(r/s))), is in 1-1 correspondence with

U   {kGS[\kr-spq = es,e = ±l,

(u,v)£D

Re(k) lies between Re(umv

When p = 2 , r is odd, and s > 0, there are

.2       ., (9-D/2

and Re(u'"vn)}.

(q- l
E
k = \

(q + 2k)r

4q

jq-2k)r

4<7



516 S. BOYER AND A. NICAS

such classes ("[ ]" denotes the greatest integer less than or equal to function).

Taking r = 1 gives K(l/s) G H(Z) with \R(n, (K(l/s)))\ = (q2 - l)s/4.

It follows from Casson's Dehn surgery formula that this quantity agrees with

k(K(l/s)).

(2.3) Question. Let M e H(Q) be NSL and ?r = nx(M). What is the rela-

tionship between k(M) and \R(n)\l

In an earlier version of this paper it was erroneously asserted that k(K( l/s))

■£ \\R(nx(K(l/s)))\. We thank Eric Klassen for bringing to our attention an

error in our application of Casson's Dehn surgery formula. For further inter-

esting calculations concerning Casson's invariant, see the forthcoming thesis of

E. Klassen (Cornell University, 1987).

3

A closed 3-manifold M has a canonical prime and torus decomposition. In

this section we investigate the additivity of k(M) with respect to these decom-

positions.

The following theorem shows that Property A is usually not preserved under

free products.

(3.1) Theorem. Suppose n is a finitely generated free product n = n{*n2 with

finite abelianization. Then n has Property A if and only if both nx and n2 have

Property A and at least one of Hx(nx) and Hx(n2) is a Z/2 vector space.

Proof. In what follows, all representation spaces will consist of SU(2) repre-

sentations.

Assume that n satisfies Property A and let fi¡ € A(nA), i = 1 , 2 , be arbitrary.

There is an x e SU(2) such that f = (fix, xfi2x~l) G R(nx) x R(nf = R(n) is

abelian. If C, Cx, and C2 denote the components of fi, fix , and /, in their

respective spaces then C = C, x C2.

Now by assumption C C A(n) and thus Cj C A(nf , i = 1,2. Since

fix and fi2 were arbitrary, both nx and n2 have Property A. Furthermore, if

neither Hfnf nor Hx(nf) is a Z/2 vector space, we may choose noncentral

fi G Ain¡), i = 1, 2 and a y G SU(2) so that (/,, yfi2y~x) e C, x C2 = C is

not abelian, contradicting our assumption that n has Property A. Thus Hfnf

is a Z/2 vector space for some i. The proof of the converse is similar.   □

Each M g H(Q) admits a prime decomposition M = #/=1 Mi, unique

up to the ordering of the factors, where each M¡ G H(Q) and is irreducible.

This suggest the question: Is k additive with respect to connected sums? If

M G H(Z) Casson has answered the question in the affirmative (see [AM]). It

is also true in general; we prove

Theorem D. Let M, and M2 be Q-homology 3-spheres. Then k(Mx#M2) =

k(Mx) + k(Mf.
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Proof. Choose genus gt Heegard splittings M( = WjX \JF W¡2 and let M =

Wx uF W2 be the genus g = gx + g2 Heegard splitting of M- MX#M2 given

by

Wj = WxjW2j,       j=l,2,

F = FX#F2.

We adopt the following notation and conventions for the purposes of this proof.

All representation spaces will consist of SU(2) representations. Let

R(Mi) = R(Tcx(M¡)),        i =1,2,

R(M) = R(nx(M)) = R(MX) x R(M2),

Qu = R(nx(W¡j)),        1 </,;< 2,

QJ = R(nx(Wj)) = QXJxQ2j,        j = 1,2,

*, = *(*,(*;)),     R*=R(7ix(F*)),        i =1,2,

R = R(nx(F)),     R* = R(nx(F*)).

There are smooth maps

<9;:/<;-SU(2),     df.p^pOF*).

Evidently, R¡ = df\e), i =1,2.
A superscript "/" appended to a space of representations will indicate the

subset of all irreducible representations in the space.

If X is an SU(2)-space, X will denote the associated orbit space. We warn

the reader that this notation differs from that used in the introduction.

Choose a neighborhood R* of R"(Mf in R] such that R(MA) n R? =

R'iMi), i = 1, 2, and set ßj = Qij n R? . Clearly Q?x n Q?2 = R"(Mi) and

(I" 1) iQl, Qahf = 2i-if'iQn , QiflR-KM,).

Now

(III.2) 2i-lf(Qx,Q2)R.kiM)=     Y    ''(C).
CCR"{M)

where the sum ranges over the components C of R"{M) and i{C) is the

intersection of Q\ and Q2 near C.

For many components C Ç R"iM), i{C) = 0. Indeed Rx has a trivial

normal bundle in iR*x)', thus

(Ön^öf,, öi^ö^   _
= ±(ö,i, öi2)(ö2Vi - 0^2>    (compare Lemma (3.2) below)

= 0.

Thus,  i(C) = 0 for each C ç Rx x R2 C R . From equation (III.2) we then
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see that

(III 3)       2(-l)g(Qx,QfR.k(M)

= <ß,fxß£, Ö,fx Ö22) + (Öu^Ö2,, ÖA2^Ö22>-

To compute the right-hand side of this equation, choose a small open 3-

ball neighborhood B of the identity in SU(2). An SU(2)-invariant metric

on R*2 can be used to construct an equivariant tubular neighborhood of R2 =

(d2\(R*2)')'l(e) of the form  T.r'2 x B -» (R\)' where d2(T(g, x)) = x~l.

Define , , ,
yV:df(B)xR2    -» R',

if,g) -    (/, T(g, dx (/))).

*F is an equivariant injection extending the inclusion  Rx x R2 —> /?    whose

image is a neighborhood of /?, x R"(M2) in /?  .

Consider the following commutative diagram, each of whose columns is a

smooth fiber bundle and each of whose horizontal arrows is an inclusion.

Ö,,, op -        Rx dfl(B)        Ä   R\

A X X
Ö,,xö2AM    Ö,2xÖ2A    -    Ä,x^'    -    df\B)xR%    -^    R1

cod.O

ö2, , ö22 -^ K2 ^

It follows from the diagram and Lemma (3.2) below that

<Ö11*Ö2* ' Qiï*<&) = (-l)"'("2"',(ö1,Ö12)«:(öi , ö22>£,v

= (-l)s^-')2(-lt-(Qu,Qx2)R.(Q2x,Q22)R.k(M2)

by (III.i;

Similarly

= 2(-1)*i+^<Ö,,Ö2>a(M2).

(Öf, x Q2X, QNX2 x Q22) = 2i-l)g^-(Qx , Q2)k(Mx]

Substituting these calculations into equation (III.3) shows k(M) = k{Mx) +

X(M2).    a

(3.2)    Lemma. Consider a diagram of smooth, compatibly oriented fiber bundles

Fx , F2    —»    E{ , E2    —>    B{ , B2
n n n
F       —        E        —»        B

where each inclusion is proper and Fx' , F22 and B["[ , B'f- have complemen-

tary dimensions in F and B . Then if Ex D F2 is compact.

(EX,E2)E = (-1)"^(BX,B2)B(FX,F2)F.

Proof. First assume that F is closed.
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Any isotopy of B with support in a chart of the bundle E —► B lifts to a

fiber preserving isotopy of E with support lying over this chart. By hypothesis,

BXC\B2 is compact and so after a finite number of such moves we may construct

a compactly supported isotopy of B which at t = 1 has made B{ transverse

to B2 and which lifts to a compactly supported, fiber-preserving isotopy of E.

We are thus reduced to the case where Bx and B2 intersect transversely in one

point and the bundle E —> B is trivial.

Now Ex and E2 intersect only within the fiber F . An isotopy of F making

Fx transverse to F2 extends to a compactly supported isotopy of E, making

Ex transverse to E2.

Note that now Ex (~)E2 = Fx nf2. Taking care of the signs involved we obtain

(Ex,E2)E = (-l)"^-(Bx,B2)B(Fx,F2)F.

Finally when F is not closed, we may use the same argument with the pro-

viso that when we lift an isotopy of B supported in a relatively compact open

chart of E —> B, we must taper it to the identity outside a given compact

neighborhood of Ex n E2.   a

Now suppose M e H(Q) is prime. According to Jaco and Shalen [JS] and

Johansson [Jo], there is a canonical decomposition M = \J"=X Mi where M¡

contains no essential, nonperipheral tori and dM¡ is a union of tori.

Fix M¡ and set dM¡ = [J"=x T,, each T a torus. Now each T¡ separates M
o

into two Q-homology circles, precisely one of which, E¡ say, misses M¡. Let

yi be the unique essential simple closed curve on T. which bounds a 2-chain

in Ej rationally. We define the closure of Mi in M to be the union

\JS[ xD2),
7 = 1 '

where the solid tori S1 x D   are attached to the boundary components of Mi

in any way which identifies each y. to some {*} x 3D2. Mt is a well-defined

element of H(Q).

Set
n

k(M) = Y^M,).
i=\

(3.3) Question. Does 1(M) = k(M) ?

Our next theorem answers this question in the affirmative when M e H(Z).

(See Theorem E of the introduction.)

(3.4) Theorem. Suppose M = Mx u7- M2 e H(Z) where T is a torus. Then

the closures Mx and M2 are elements of H(Z) and k(M) = k(Mx) + k(M2).

(3.5) Remarks, (i) Although we defined the closure operation only for the com-

ponents of the torus decomposition of a prime M e H(Q), we make a similar
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definition for any decomposition of an M e H(Q) into components whose

boundaries consist of tori.

(ii) Theorem (3.4) and an inductive argument shows that k(M) = k(M) when

M G H(Z).

Proof of Theorem (3.4). Denote by Kt the core of S1 x D2 in M¡, i' = 1, 2 ,

and let Kt(l) be the element of H(Z) resulting from the +1 surgery of Mi

along Ki. If Ä";' is the core of the surgery solid torus in A^(l), then A"(' has

exterior equal to M¡ and furthermore, K'f-l) = M¡. Hence

M = MXU M2 = M(K[, K2 ; -1, 0, 1, 1)

= (K'x#K2)(-l) [Gl, §3.1]

by the remarks following Lemma 7.1 of [G2]. Then Casson's Dehn surgery

formula [AM] implies

k(M) = k((K[#K2)(-l))

= X(Kx(l)#K2(l))-2-'A%l#K,(l)

= (k(Kx(l)) - ^A{2kl)) + (k(K2(l)) - ±A<g(l))

= k(K'x(-l)) + k(K2(-l))

= k(Mx) + k(M2).    a

(3.6) Question. Is there a splitting formula for surfaces of higher genus?

Consider again a prime manifold M e H(Q) with torus decomposition M =

U"=i M i. If M i is prime and atoroidal, then M ¡ is either NSL, in which case

Theorem C implies nx(MA) has Property A, or Mi is Haken and therefore

hyperbolic by Thurston's hyperbolization theorem [T].

(3.7) Question. If M e H(Q) is Haken and hyperbolic, does nx(M) satisfy

Property A?

(3.8) Remark. A closed, prime, atoroidal M G H(Q) which is Seifert fibered

is NSL [Ja, Chapter VI].

If Thurston's geometrization conjecture [T] is true, then each Mi is either

Seifert fibered or hyperbolic. However Mi may fail to be prime or atoroidal.

Thus it would be convenient to define a Casson type invariant for an M , which

is the interior of a compact A3 whose boundary is a union of tori and such

that the inclusion dN —> A induces a surjection HfdN; Q) —> HX(N; Q).

(3.9) Problem. Define such an invariant.

We close this section with some general observations concerning the relation-

ship between Casson type invariants and the //-invariant.

Casson proved (see [AM]) that for M e H(Z), k(M) = p(M) (mod2).

For M g //(Z/2) with nx(M) satisfying Property A, this identity will not

hold in general. For instance, if M is a lens space k(M) is defined and is 0,

since nx(M) is abelian. On the other hand, p(M) can take on any even value
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(mod 16). It would be of interest to determine the connection, if any, between

these two quantities. Walter Neumann [N] has defined an integer valued invari-

ant for Z/2-homology 3-spheres of plumbed type, which reduces (mod 16) to

the //-invariant.

(3.10) Question. What is the relationship between Neumann's invariant and

Casson type invariants?

Finally, we point out that in general, the //-invariant is defined for framed 3-

manifolds. This suggests that the appropriate definition of k(M) should depend

on a framing of M.
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