The connection matrix in Morse-Smale flows
HTML articles powered by AMS MathViewer
- by James F. Reineck
- Trans. Amer. Math. Soc. 322 (1990), 523-545
- DOI: https://doi.org/10.1090/S0002-9947-1990-0972705-3
- PDF | Request permission
Abstract:
In a Morse-Smale flow with no periodic orbits, it is shown that the connection matrix is unique. In the case of periodic orbits, nonuniqueness can occur. We show that on $2$-manifolds, with some technical assumptions, given a connection matrix for the flow, one can replace the periodic orbits with doubly-connected rest points and obtain a new flow with no periodic orbits having the given connection matrix.References
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133
- Charles Conley and Eduard Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), no. 2, 207–253. MR 733717, DOI 10.1002/cpa.3160370204
- John M. Franks, Morse-Smale flows and homotopy theory, Topology 18 (1979), no. 3, 199–215. MR 546790, DOI 10.1016/0040-9383(79)90003-X R. Franzosa, Index filtrations and connection matrices for partially ordered Morse decompositions, Thesis, Univ. of Wisconsin, 1984.
- Robert Franzosa, Index filtrations and the homology index braid for partially ordered Morse decompositions, Trans. Amer. Math. Soc. 298 (1986), no. 1, 193–213. MR 857439, DOI 10.1090/S0002-9947-1986-0857439-7
- Robert D. Franzosa, The connection matrix theory for Morse decompositions, Trans. Amer. Math. Soc. 311 (1989), no. 2, 561–592. MR 978368, DOI 10.1090/S0002-9947-1989-0978368-7
- Robert D. Franzosa, The continuation theory for Morse decompositions and connection matrices, Trans. Amer. Math. Soc. 310 (1988), no. 2, 781–803. MR 973177, DOI 10.1090/S0002-9947-1988-0973177-6
- Christopher McCord, The connection map for attractor-repeller pairs, Trans. Amer. Math. Soc. 307 (1988), no. 1, 195–203. MR 936812, DOI 10.1090/S0002-9947-1988-0936812-4 K. Mischaikow, Classification of travelling wave solutions to reaction-diffusion equations, preprint. K. Mischaikow and G. Wolkowicz, Predator-prey with group defense; a connection matrix approach, preprint.
- S. Newhouse and M. M. Peixoto, There is a simple arc joining any two Morse-Smale flows, Trois études en dynamique qualitative, Astérisque, No. 31, Soc. Math. France, Paris, 1976, pp. 15–41. MR 0516405
- James F. Reineck, Travelling wave solutions to a gradient system, Trans. Amer. Math. Soc. 307 (1988), no. 2, 535–544. MR 940216, DOI 10.1090/S0002-9947-1988-0940216-8
- Dietmar Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), no. 1, 1–41. MR 797044, DOI 10.1090/S0002-9947-1985-0797044-3
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 322 (1990), 523-545
- MSC: Primary 58F12; Secondary 34C40, 58F09
- DOI: https://doi.org/10.1090/S0002-9947-1990-0972705-3
- MathSciNet review: 972705