Baer modules over domains
HTML articles powered by AMS MathViewer
- by Paul C. Eklof, László Fuchs and Saharon Shelah
- Trans. Amer. Math. Soc. 322 (1990), 547-560
- DOI: https://doi.org/10.1090/S0002-9947-1990-0974514-8
- PDF | Request permission
Abstract:
For a commutative domain $R$ with $1$, an $R$-module $B$ is called a Baer module if $\operatorname {Ext} _R^1(B,T) = 0$ for all torsion $R$-modules $T$. The structure of Baer modules over arbitrary domains is investigated, and the problem is reduced to the case of countably generated Baer modules. This requires a general version of the singular compactness theorem. As an application we show that over $h$-local Prüfer domains, Baer modules are necessarily projective. In addition, we establish an independence result for a weaker version of Baer modules.References
- Reinhold Baer, The subgroup of the elements of finite order of an abelian group, Ann. of Math. (2) 37 (1936), no. 4, 766–781. MR 1503308, DOI 10.2307/1968617
- Paul C. Eklof, Set-theoretic methods in homological algebra and abelian groups, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 69, Presses de l’Université de Montréal, Montreal, Que., 1980. MR 565449
- Paul C. Eklof, Homological algebra and set theory, Trans. Amer. Math. Soc. 227 (1977), 207–225. MR 453520, DOI 10.1090/S0002-9947-1977-0453520-X
- Paul C. Eklof and László Fuchs, Baer modules over valuation domains, Ann. Mat. Pura Appl. (4) 150 (1988), 363–373. MR 946041, DOI 10.1007/BF01761475
- Paul C. Eklof and Alan H. Mekler, Categoricity results for $L_{\infty \kappa }$-free algebras, Ann. Pure Appl. Logic 37 (1988), no. 1, 81–99. MR 924679, DOI 10.1016/0168-0072(88)90049-8
- Paul C. Eklof and Alan H. Mekler, Almost free modules, North-Holland Mathematical Library, vol. 46, North-Holland Publishing Co., Amsterdam, 1990. Set-theoretic methods. MR 1055083
- László Fuchs and Luigi Salce, Modules over valuation domains, Lecture Notes in Pure and Applied Mathematics, vol. 97, Marcel Dekker, Inc., New York, 1985. MR 786121
- Rüdiger Göbel, New aspects for two classical theorems on torsion splitting, Comm. Algebra 15 (1987), no. 12, 2473–2495. MR 917750, DOI 10.1080/00927878708823548
- Phillip Griffith, A solution to the splitting mixed group problem of Baer, Trans. Amer. Math. Soc. 139 (1969), 261–269. MR 238957, DOI 10.1090/S0002-9947-1969-0238957-1 R. Grimaldi, Baer and $UT$-modules over domains, Ph.D. Thesis, New Mexico State Univ., 1972.
- Wilfrid Hodges, In singular cardinality, locally free algebras are free, Algebra Universalis 12 (1981), no. 2, 205–220. MR 608664, DOI 10.1007/BF02483879
- Irving Kaplansky, The splitting of modules over integral domains, Arch. Math. (Basel) 13 (1962), 341–343. MR 144939, DOI 10.1007/BF01650081
- Eben Matlis, Cotorsion modules, Mem. Amer. Math. Soc. 49 (1964), 66. MR 178025
- Alan H. Mekler, Proper forcing and abelian groups, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 285–303. MR 722625, DOI 10.1007/BFb0103709
- Alan H. Mekler, On Shelah’s Whitehead groups and CH, Rocky Mountain J. Math. 12 (1982), no. 2, 271–278. MR 661736, DOI 10.1216/RMJ-1982-12-2-271
- R. J. Nunke, Modules of extensions over Dedekind rings, Illinois J. Math. 3 (1959), 222–241. MR 102538
- B. L. Osofsky, Upper bounds on homological dimensions, Nagoya Math. J. 32 (1968), 315–322. MR 232805
- Saharon Shelah, Incompactness in regular cardinals, Notre Dame J. Formal Logic 26 (1985), no. 3, 195–228. MR 796637, DOI 10.1305/ndjfl/1093870869
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 322 (1990), 547-560
- MSC: Primary 13C13; Secondary 13C10, 13F05
- DOI: https://doi.org/10.1090/S0002-9947-1990-0974514-8
- MathSciNet review: 974514