Multipliers, linear functionals and the Fréchet envelope of the Smirnov class $N_ *(\textbf {U}^ n)$
HTML articles powered by AMS MathViewer
- by Marek Nawrocki
- Trans. Amer. Math. Soc. 322 (1990), 493-506
- DOI: https://doi.org/10.1090/S0002-9947-1990-0974523-9
- PDF | Request permission
Abstract:
Linear topological properties of the Smirnov class ${N_{\ast }}({\mathbb {U}^n})$ of the unit polydisk ${\mathbb {U}^n}$ in ${\mathbb {C}^n}$ are studied. All multipliers of ${N_{\ast }}({\mathbb {U}^n})$ into the Hardy spaces ${H_p}({\mathbb {U}^n}),\;0 < p \leqslant \infty$, are described. A representation of the continuous linear functionals on ${N_{\ast }}({\mathbb {U}^n})$ is obtained. The Fréchet envelope of ${N_{\ast }}({\mathbb {U}^n})$ is constructed. It is proved that if $n > 1$, then ${N_{\ast }}({\mathbb {U}^n})$ is not isomorphic to ${N_{\ast }}(\mathbb {U}{^1})$.References
- A. B. Aleksandrov, Essays on nonlocally convex Hardy classes, Complex analysis and spectral theory (Leningrad, 1979/1980) Lecture Notes in Math., vol. 864, Springer, Berlin-New York, 1981, pp. 1–89. MR 643380 R. P. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in ${L_p}$, Astérisque 77 (1980), 11-66.
- Lech Drewnowski, Topological vector groups and the Nevanlinna class, Funct. Approx. Comment. Math. 22 (1993), 25–39 (1994). MR 1304356
- Ed Dubinsky, Basic sequences in a stable finite type power series space, Studia Math. 68 (1980), no. 2, 117–130. MR 599141, DOI 10.4064/sm-68-2-117-130
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Arlene P. Frazier, The dual space of $H^{p}$ of the polydisc for $0<p<1$, Duke Math. J. 39 (1972), 369–379. MR 293119
- Kyong T. Hahn, Properties of holomorphic functions of bounded characteristic on star-shaped circular domains, J. Reine Angew. Math. 254 (1972), 33–40. MR 361171, DOI 10.1515/crll.1972.254.33 M. Nawrocki, Linear functionals on the Smirnov class of the unit ball in ${\mathbb {C}^n}$, Ann. Acad. Sci. Fenn. Ser. A (to appear).
- I. I. Privalov, Graničnye svoĭstva analitičeskih funkciĭ, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950 (Russian). 2d ed.]. MR 0047765
- Stefan Rolewicz, Metric linear spaces, 2nd ed., PWN—Polish Scientific Publishers, Warsaw; D. Reidel Publishing Co., Dordrecht, 1984. MR 802450
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841
- Helmut H. Schaefer, Topological vector spaces, Graduate Texts in Mathematics, Vol. 3, Springer-Verlag, New York-Berlin, 1971. Third printing corrected. MR 0342978, DOI 10.1007/978-1-4684-9928-5
- Joel H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), no. 1, 187–202. MR 500100
- Manfred Stoll, The space $N_\ast$ of holomorphic functions on bounded symmetric domains, Ann. Polon. Math. 32 (1976), no. 1, 95–110. MR 417438, DOI 10.4064/ap-32-1-95-110
- Manfred Stoll, Mean growth and Fourier coefficients of some classes of holomorphic functions on bounded symmetric domains, Ann. Polon. Math. 45 (1985), no. 2, 161–183. MR 802292, DOI 10.4064/ap-45-2-161-183
- Niro Yanagihara, The containing Fréchet space for the class $N^{+}$, Duke Math. J. 40 (1973), 93–103. MR 344860
- Niro Yanagihara, Multipliers and linear functionals for the class $N^{+}$, Trans. Amer. Math. Soc. 180 (1973), 449–461. MR 338382, DOI 10.1090/S0002-9947-1973-0338382-X
- Niro Yanagihara, Mean growth and Taylor coefficients of some classes of functions, Ann. Polon. Math. 30 (1974), 37–48. (loose errata). MR 338383, DOI 10.4064/ap-30-1-37-48
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 322 (1990), 493-506
- MSC: Primary 46E10; Secondary 32A35
- DOI: https://doi.org/10.1090/S0002-9947-1990-0974523-9
- MathSciNet review: 974523