The Arf and Sato link concordance invariants
HTML articles powered by AMS MathViewer
- by Rachel Sturm Beiss
- Trans. Amer. Math. Soc. 322 (1990), 479-491
- DOI: https://doi.org/10.1090/S0002-9947-1990-1012525-7
- PDF | Request permission
Abstract:
The Kervaire-Arf invariant is a $Z/2$ valued concordance invariant of knots and proper links. The $\beta$ invariant (or Sato’s invariant) is a $Z$ valued concordance invariant of two component links of linking number zero discovered by J. Levine and studied by Sato, Cochran, and Daniel Ruberman. Cochran has found a sequence of invariants $\{ {\beta _i}\}$ associated with a two component link of linking number zero where each ${\beta _i}$ is a $Z$ valued concordance invariant and ${\beta _0} = \beta$. In this paper we demonstrate a formula for the Arf invariant of a two component link $L = X \cup Y$ of linking number zero in terms of the $\beta$ invariant of the link: \[ \operatorname {arf} (X \cup Y) = \operatorname {arf} (X) + \operatorname {arf} (Y) + \beta (X \cup Y)\quad (\bmod 2).\] This leads to the result that the Arf invariant of a link of linking number zero is independent of the orientation of the link’s components. We then establish a formula for $|\beta |$ in terms of the link’s Alexander polynomial $\Delta (x,y) = (x - 1)(y - 1)f(x,y)$: \[ |\beta (L)| = |f(1,1)|.\] Finally we find a relationship between the ${\beta _i}$ invariants and linking numbers of lifts of $X$ and $Y$ in a $Z/2$ cover of the compliment of $X \cup Y$.References
- Cahit Arf, Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. I, J. Reine Angew. Math. 183 (1941), 148–167 (German). MR 8069, DOI 10.1515/crll.1941.183.148
- Tim D. Cochran, Concordance invariance of coefficients of Conway’s link polynomial, Invent. Math. 82 (1985), no. 3, 527–541. MR 811549, DOI 10.1007/BF01388868 D. Cooper, The universal Abelian cover of a link (R. Brown and T. L. Thickstun, eds.), Lecture Notes Ser., vol. 48, London Math. Soc., 1979.
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 148075, DOI 10.1090/S0273-0979-2015-01504-1
- J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537–554. MR 200922, DOI 10.2307/1970459
- K. Murasugi, On the Arf invariant of links, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 1, 61–69. MR 727081, DOI 10.1017/S0305004100061314
- Raymond A. Robertello, An invariant of knot cobordism, Comm. Pure Appl. Math. 18 (1965), 543–555. MR 182965, DOI 10.1002/cpa.3160180309 R. Sato, Corbodisms of semi-boundary links, preprint.
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 322 (1990), 479-491
- MSC: Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9947-1990-1012525-7
- MathSciNet review: 1012525