Tauberian theorems for the Laplace-Stieltjes transform
HTML articles powered by AMS MathViewer
- by C. J. K. Batty
- Trans. Amer. Math. Soc. 322 (1990), 783-804
- DOI: https://doi.org/10.1090/S0002-9947-1990-1013326-6
- PDF | Request permission
Abstract:
Let $\alpha :[0,\infty ) \to {\mathbf {C}}$ be a function of locally bounded variation, with $\alpha (0) = 0$, whose Laplace-Stieltjes transform $g(z) = \int _0^\infty {{e^{ - zt}}d\alpha (t)}$ is absolutely convergent for $\operatorname {Re} z > 0$. Let $E$ be the singular set of $g$ in $i{\mathbf {R}}$, and suppose that $0 \notin E$. Various estimates for $\lim {\sup _{t \to \infty }}|\alpha (t) - g(0)|$ are obtained. In particular, $\alpha (t) \to g(0)$ as $t \to \infty$ if \[ \begin {gathered} ({\text {i)}}\quad E {\text {is null,}} \hfill \\ {\text {(ii)}}\quad \sup \limits _{y \in E} \sup \limits _{t > 0} \left | {\int _0^t {{e^{ - iys}} d\alpha (s)} } \right | < \infty , \hfill \\ ({\text {iii)}}\quad \lim \limits _{\delta \downarrow 0} \lim \sup \limits _{t \to \infty } \sup \limits _{t - \delta \leqslant s \leqslant t} |\alpha (s) - \alpha (t)| = 0. \hfill \\ \end {gathered} \] This result contains Tauberian theorems for Laplace transforms, power series, and Dirichlet series.References
- G. R. Allan, A. G. O’Farrell, and T. J. Ransford, A Tauberian theorem arising in operator theory, Bull. London Math. Soc. 19 (1987), no. 6, 537–545. MR 915430, DOI 10.1112/blms/19.6.537
- W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), no. 2, 837–852. MR 933321, DOI 10.1090/S0002-9947-1988-0933321-3 A. E. Ingham, On Wiener’s method in Tauberian theorems, Proc. London Math. Soc. (2) 38 (1935), 458-480.
- Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), no. 3, 313–328. MR 859138, DOI 10.1016/0022-1236(86)90101-1
- J. Korevaar, On Newman’s quick way to the prime number theorem, Math. Intelligencer 4 (1982), no. 3, 108–115. MR 684025, DOI 10.1007/BF03024240
- Yu. I. Lyubich and Vũ Quốc Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88 (1988), no. 1, 37–42. MR 932004, DOI 10.4064/sm-88-1-37-42
- D. J. Newman, Simple analytic proof of the prime number theorem, Amer. Math. Monthly 87 (1980), no. 9, 693–696. MR 602825, DOI 10.2307/2321853
- T. J. Ransford, Some quantitative Tauberian theorems for power series, Bull. London Math. Soc. 20 (1988), no. 1, 37–44. MR 916072, DOI 10.1112/blms/20.1.37 E. C. Titchmarsh, The theory of functions, Oxford Univ. Press, Oxford, 1932. D. V. Widder, An introduction to transform theory, Academic Press, New York, 1971. D. Zagier, Short proof of the prime number theorem, unpublished manuscript.
- Charles J. K. Batty and Vũ Quốc Phóng, Stability of individual elements under one-parameter semigroups, Trans. Amer. Math. Soc. 322 (1990), no. 2, 805–818. MR 1022866, DOI 10.1090/S0002-9947-1990-1022866-5
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 322 (1990), 783-804
- MSC: Primary 44A10; Secondary 30B50, 40E05, 47A60
- DOI: https://doi.org/10.1090/S0002-9947-1990-1013326-6
- MathSciNet review: 1013326