Stability of individual elements under one-parameter semigroups
HTML articles powered by AMS MathViewer
- by Charles J. K. Batty and Quôc Phóng Vù
- Trans. Amer. Math. Soc. 322 (1990), 805-818
- DOI: https://doi.org/10.1090/S0002-9947-1990-1022866-5
- PDF | Request permission
Abstract:
Let $\{ T(t):t \geqslant 0\}$ be a ${C_0}$-semigroup on a Banach space $X$ with generator $A$, and let $x \in X$. If $\sigma (A) \cap i{\mathbf {R}}$ is empty and $t \mapsto T(t)x$ is uniformly continuous, then $||T(t)x|| \to 0$ as $t \to \infty$. If the semigroup is sun-reflexive, $\sigma (A) \cap i{\mathbf {R}}$ is countable, $P\sigma (A) \cap i{\mathbf {R}}$ is empty, and $t \mapsto T(t)x$ is uniformly weakly continuous, then $T(t)x \to 0$ weakly as $t \to \infty$. Questions of almost periodicity and of stabilization of contraction semigroups on Hilbert space are also discussed.References
- W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), no. 2, 837–852. MR 933321, DOI 10.1090/S0002-9947-1988-0933321-3
- C. J. K. Batty, Tauberian theorems for the Laplace-Stieltjes transform, Trans. Amer. Math. Soc. 322 (1990), no. 2, 783–804. MR 1013326, DOI 10.1090/S0002-9947-1990-1013326-6
- Ph. Clément, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn, and B. de Pagter, One-parameter semigroups, CWI Monographs, vol. 5, North-Holland Publishing Co., Amsterdam, 1987. MR 915552
- K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63–97. MR 131784, DOI 10.1007/BF02559535
- B. de Pagter, A characterization of sun-reflexivity, Math. Ann. 283 (1989), no. 3, 511–518. MR 985246, DOI 10.1007/BF01442743 N. Dunford and J. T. Schwartz, Linear operators. I, Wiley, New York, 1958.
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373 A. E. Ingham, On Wiener’s method in Tauberian theorems, Proc. London Math. Soc. (2) 38 (1935), 458-480.
- J. Korevaar, On Newman’s quick way to the prime number theorem, Math. Intelligencer 4 (1982), no. 3, 108–115. MR 684025, DOI 10.1007/BF03024240
- V. I. Korobov and G. M. Sklyar, On the question of the strong stabilizability of contracting systems in Hilbert space, Differentsial′nye Uravneniya 20 (1984), no. 11, 1862–1869, 2019 (Russian). MR 773939
- Ulrich Krengel, Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411, DOI 10.1515/9783110844641
- N. Levan and L. Rigby, Strong stabilizability of linear contractive control systems on Hilbert space, SIAM J. Control Optim. 17 (1979), no. 1, 23–35. MR 516853, DOI 10.1137/0317003
- Yu. I. Lyubich and Vũ Quốc Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88 (1988), no. 1, 37–42. MR 932004, DOI 10.4064/sm-88-1-37-42
- W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck, One-parameter semigroups of positive operators, Lecture Notes in Mathematics, vol. 1184, Springer-Verlag, Berlin, 1986. MR 839450, DOI 10.1007/BFb0074922
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
- Robert E. O’Brien Jr., Contraction semigroups, stabilization, and the mean ergodic theorem, Proc. Amer. Math. Soc. 71 (1978), no. 1, 89–94. MR 495844, DOI 10.1090/S0002-9939-1978-0495844-2
- Vũ Quốc Phóng, Représentations compactifiantes de semi-groupes, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 6, 273–274 (French, with English summary). MR 907960 —, Applications of Suskevic kernel to semigroup actions and representations, preprint, 1987.
- Vu Kuok Fong and Yu. I. Lyubich, A spectral criterion for almost periodicity for one-parameter semigroups, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 47 (1987), 36–41 (Russian); English transl., J. Soviet Math. 48 (1990), no. 6, 644–647. MR 916441, DOI 10.1007/BF01094717
- Marshall Slemrod, A note on complete controllability and stabilizability for linear control systems in Hilbert space, SIAM J. Control 12 (1974), 500–508. MR 0353107
- Kôsaku Yosida and Shizuo Kakutani, Operator-theoretical treatment of Markoff’s process and mean ergodic theorem, Ann. of Math. (2) 42 (1941), 188–228. MR 3512, DOI 10.2307/1968993 D. Zagier, Short proof of the prime number theorem, unpublished manuscript.
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 322 (1990), 805-818
- MSC: Primary 47D03
- DOI: https://doi.org/10.1090/S0002-9947-1990-1022866-5
- MathSciNet review: 1022866