AN ASYMPTOTIC FORMULA FOR HYPO-ANALYTIC PSEUDODIFFERENTIAL OPERATORS

S. BERHANU

ABSTRACT. An asymptotic expansion formula for hypo-analytic pseudodifferential operators is proved and applications are given.

INTRODUCTION

In [2] we introduced hypo-analytic pseudodifferential operators that are naturally associated with the hypo-analytic structures of [1]. In this paper we establish an asymptotic formula for these operators. Such an expansion is essential in several applications. It allows us to define, in a natural way, the symbol of a hypo-analytic pseudodifferential operator, as well as the symbols of the adjoint, transpose and composition of operators. The paper is organized as follows. In Chapter I we discuss and develop the asymptotic formula. Chapter II applies this formula to two results.

Acknowledgment. It is a pleasure to express my thanks to Professor F. Treves for many stimulating discussions.

1. ASYMPTOTIC EXPANSION

1. Hypo-analytic structures. We will deal with structures which are a special case of the hypo-analytic structures introduced by Baouendi, Chang and Treves in [1]. We shall summarize the relevant concepts here. Let \(\Omega \) be a \(C^\infty \) manifold of dimension \(m \). A hypo-analytic structure of maximal dimension on \(\Omega \) is the data of an open covering \((U_\alpha) \) of \(\Omega \) and for each index \(\alpha \), of \(m \) \(C^\infty \) functions \(Z_1, \ldots, Z_m \) satisfying the following two conditions:

1. \(dZ_1, \ldots, dZ_m \) are linearly independent at each point of \(U_\alpha \);
2. if \(U_\alpha \cap U_\beta \neq \emptyset \), there are open neighborhoods \(\mathcal{O}_\alpha \) of \(Z_\alpha(U_\alpha \cap U_\beta) \) and \(\mathcal{O}_\beta \) of \(Z_\beta(U_\alpha \cap U_\beta) \) and a holomorphic map \(F_\beta^{\alpha} \) of \(\mathcal{O}_\alpha \) onto \(\mathcal{O}_\beta \) such that

\[
Z_\beta = F_\beta^{\alpha} \circ Z_\alpha \quad \text{on} \quad U_\alpha \cap U_\beta .
\]

We will use the notation \(Z_\alpha = (Z_\alpha^1, \ldots, Z_\alpha^m) : U_\alpha \to C^m \). A distribution \(h \) defined in an open neighborhood of a point \(p_0 \) of \(\Omega \) is hypo-analytic at \(p_0 \)
if there is a chart \((U_\alpha, Z_\alpha)\) of the above type whose domain contains \(p_0\) and a holomorphic function \(\hat{h}\) defined on an open neighborhood of \(Z_\alpha(p_0)\) in \(C^m\) such that \(h = \hat{h} \circ Z_\alpha\) in a neighborhood of \(p_0\). By a hypo-analytic local chart we mean an \(m+1\)-tuple \((U, Z^1, \ldots, Z^m)\) [abbreviated \((U, Z)\)] consisting of an open subset \(U\) of \(\Omega\) and of \(m\) hypo-analytic functions whose differentials are linearly independent at every point of \(U\).

We will now reason in a hypo-analytic local chart \((U, Z)\) of \(\Omega\). Assume that the open set \(U\) has been contracted sufficiently so that the mapping \(Z = (Z^1, \ldots, Z^m) : U \to C^m\) is a diffeomorphism of \(U\) onto \(Z(U)\) and that \(U\) is the domain of local coordinates \(x_j\) \((1 \leq j \leq m)\) all vanishing at a "central point" which will be denoted by \(0\). We will suppose \(Z(0) = 0\) and denote by \(Z_x\) the Jacobian matrix of the \(Z^j\) with respect to the \(x^k\). Substitution of \(Z_x(0)^{-1}Z(x)\) for \(Z(x)\) will allow us to assume that \(Z_x(0) = \) the identity matrix. Therefore the real part of the \(Z^j\) \((j = 1, \ldots, m)\) can serve as coordinates and in these new coordinates

\[
Z^j = x^j + \sqrt{-1}\phi^j(x), \quad j = 1, \ldots, m,
\]

where \(\phi = (\phi^1, \ldots, \phi^m)\) is real valued with 0 differential at the origin.

Moreover, the functions \(Z^j\) are selected so that all the derivatives of order two of the \(\phi^j\) vanish at the origin. Indeed if this is not already so it suffices to replace each \(Z^j\) by

\[
Z^j - \frac{\sqrt{-1}}{2} \sum_k \sum_l \frac{\partial^2 \phi^j}{\partial x^k \partial x^l}(0)Z^k Z^l.
\]

We will use \(\hat{Z}_x\) to denote the transpose of the inverse of the matrix \(Z_x\). Since the first and second derivatives of all the \(\phi^j\) are zero at the origin, after contracting \(U\) if necessary, we can find a number \(c\), \(0 < c < 1\) such that for all \(x, y\) in \(U\) and for all \(\xi\) in \(R_m\)

\[
|\Re \hat{Z}_x(x)\xi| \leq c|\Im \hat{Z}_x(x)\xi| \quad \text{and} \quad
(1.1) \quad \Re \{\sqrt{-1}\hat{Z}_x(x)\xi \cdot (Z(x) - Z(y)) - \langle \hat{Z}_x(x)\xi, (Z(x) - Z(y))^2 \rangle\}
\]

\[
\leq -c|\xi||Z(x) - Z(y)|^2,
\]

where \(\langle \xi \rangle = (\xi^1 + \cdots + \xi^m)^{\frac{1}{2}}\) for \(|\Im \xi| < |\Re \xi|\).

2. Hypo-analytic pseudodifferential operators. We will continue to work in the chart \((U, Z)\) of §1. Our aim now is to briefly describe the hypo-analytic pseudodifferential operators.

Definition 2.1. Let \(d\) be a real number. We denote by \(\tilde{S}^d(U, U)\) the space of holomorphic functions \(\tilde{a}(z, w, \theta)\) in a product set \(\mathcal{C} \times \mathcal{C} \times \mathcal{C}\) with \(\mathcal{C}\) an open neighborhood of \(Z(U)\), and \(\mathcal{C}\) an open cone in \(C_m \setminus \{0\}\) containing \(R_m \setminus \{0\}\) which have the following property:
Given any compact subset K of \mathcal{C} and any closed cone $\mathcal{C}' \subset \mathcal{C}$ whose interior contains $R_m \setminus \{0\}$, there is a constant $r > 0$ such that for all z, w in K and all θ in \mathcal{C}', we have

$$|\hat{a}(z, w, \theta)| \leq r(1 + |\theta|)^d.$$

Definition 2.2. We say that a C^∞ function $a(x, y, \theta)$ in $U \times U \times R_m$ is a hypo-analytic amplitude of degree d and we write $a \in \mathcal{S}^d(U, U)$ if there is $\hat{a} \in \hat{S}^d(U, U)$ such that $a(x, y, \theta) = \hat{a}(Z(x), Z(y), \theta)$, for all x in U, y in U, $0 \neq \theta \in R_m$.

Let $a(x, y, \theta) = \hat{a}(Z(x), Z(y), \theta)$ be a hypo-analytic amplitude of degree $d \in R$ in $U \times U$. For any $\epsilon > 0$ and $u \in C^0_c(U)$ we define the linear operator

$$A^\epsilon u(x) = \left(\frac{1}{4\pi^3}\right)^q \int_{U} \int_{R_m} \exp(\sqrt{-1} \xi \cdot (Z(x) - Z(y) - \epsilon|\xi|^2)) \cdot a(x, y, \xi)u(y) dZ(y) d\xi$$

We contract U sufficiently so that for every $x, y \in U$ and $\xi \in R_m$ the point $\tilde{Z}(x, y, \xi) = Z(x) + \sqrt{-1}((\hat{Z}(x, y, \xi))(Z(x) - Z(y)))$ will remain in the cone in which $a(x, y, \cdot)$ is defined. We observe that each $A^\epsilon u$ is a hypo-analytic function. The results of [2] may be consolidated into:

Theorem 2.1. When $\epsilon \to 0$, A^ϵ converges to a continuous linear operator A: $E'(U) \to \mathcal{D}(U)$ which maps $C^\infty(U)$ into $C^\infty(U)$ continuously. If u is hypo-analytic at 0 then Au is hypo-analytic at 0.

The first part of the theorem is proved by first deforming the path of ξ-integration from R_m to the image of R_m under the map

$$\xi \to \xi(\xi) = \tilde{Z}(x)(\xi) + \sqrt{-1}(\hat{Z}(x, y, \xi))(Z(x) - Z(y)).$$

The second inequality in (1.1) will then force the exponential term in (2.3) to be bounded. The integral can then be treated as an oscillatory integral.

Following [2] we will call A a hypo-analytic pseudodifferential operator. When $Z(x) = x$ this specializes to the usual analytic pseudodifferential operator.

3. Formal hypo-analytic amplitudes. In this section (U, Z) will be as in §2. Our aim is to establish an asymptotic expansion formula for hypo-analytic amplitudes.

Fix a neighborhood \mathcal{O} of $Z(U)$ in C^m, a cone \mathcal{C} in $C^m \setminus \{0\}$ and let $R_0(z, w)$ be a positive continuous function on $\mathcal{O} \times \mathcal{O}$. For each $j = 0, 1, 2, \ldots$ let $k_j(z, w, \theta)$ be a holomorphic function in the set

$$\{ (z, w, \theta) \in \mathcal{O} \times \mathcal{O} \times \mathcal{C}; |\theta| > R_0(z, w) \sup(j, 1) \}.$$

Set $k_j(x, y, \theta) = \hat{k}_j(Z(x), Z(y), \theta)$.
Definition 3.1. We will say that the series \[\sum_{j=0}^{\infty} k_j(x, y, \theta) \] defines a formal hypo-analytic amplitude of degree \(d \) if there exists a continuous function \(c_0(z, w) > 0 \) on \(\mathcal{O} \times \mathcal{O} \) such that for all \((z, w)\) in \(\mathcal{O} \times \mathcal{O} \) and all \(\theta \) in \(\mathcal{E} \), \(|\theta| > R_0(z, w)\sup(j, 1)\),

\[|\hat{k}_j(z, w, \theta)| \leq c_0(z, w)^{j+1} j!|\theta|^{d-j}. \]

We now show how to construct a true hypo-analytic amplitude from the formal one given above. We will work in a compact set \(K \subseteq \mathcal{U} \) and a relatively compact neighborhood \(\mathcal{O}_K \) of \(Z(K) \) in \(\mathcal{O} \). This enables us to replace the functions \(c_0(z, w) \) and \(R_0(z, w) \) of the above definition by constants \(C_0 \) and \(R_0 \). We will also assume that the cone \(\mathcal{E} \) has been shrunk to satisfy: for some \(\delta > 0 \), whenever \(\theta = \xi + \sqrt{-1}\eta \in \mathcal{E} \), then \(\delta|\theta| \leq |\xi| \). Let \(R > \max(R_0, C_0) \).

We will use a sequence of smooth cutoff functions \(\phi_j(\xi) \) having the following properties:

\[0 \leq \phi_j(\xi) \text{ for all } \xi, \quad \text{and} \quad \phi_j(\xi) = 0 \text{ in } |\xi| < 2R \sup(j, 1), \]

\[\phi_j(\xi) = 1 \text{ if } |\xi| > 3R \sup(j, 1); \]

\[\phi_j(\xi) = 0 \text{ if } |\xi| < 2; \]

See [8] for the construction of such cutoffs. Define

\[\hat{k}(z, w, \theta) = \sum_{j=0}^{\infty} \phi_j(\xi)^j k_j(z, w, \theta) \]

for \((z, w) \in \mathcal{O}_K \times \mathcal{O}_K\) and \(\theta = \xi + \sqrt{-1}\eta \in \mathcal{E} \). \(\hat{k} \) is a \(C^\infty \) function of \((z, w, \theta)\) holomorphic in \((z, w)\). \(\hat{k} \) satisfies the following estimates:

\[|\hat{k}(z, w, \theta)| \leq \sum_{0 \leq j < d} |\hat{k}_j(z, w, \theta)| + \sum_{j \geq d} \phi_j(\xi)^j |k_j(z, w, \theta)|; \]

\[\leq \sum_{0 \leq j < d} |\hat{k}_j(z, w, \theta)| + \sum_{j \geq d} \phi_j(\xi)c_0^{j+1} j!|\theta|^{d-j}; \]

\[\leq \sum_{0 \leq j < d} |\hat{k}_j(z, w, \theta)| + \sum_{j \geq d} \phi_j(\xi)c_0^{j+1} j!|\xi|^{d-j}. \]

Since for \(j \geq d \) the \(j \)th term lives on the set \(\{\xi : |\xi| \geq 2Rj\} \), the latter

\[\leq \sum_{0 \leq j < d} |\hat{k}_j(z, w, \theta)| + |\xi|^d \sum_{j \geq d} c_0^{j+1} j! \left(\frac{1}{2Rj} \right)^j \]

\[\leq \sum_{0 \leq j < d} |\hat{k}_j(z, w, \theta)| + \text{constant } |\xi|^d \]

\[\leq \text{constant } |\theta|^d. \]
\[\partial_{\theta} \hat{k}(z, w, \theta) \leq \sum_{j=0}^{\infty} |\partial_{\theta} \phi_j(\xi) \hat{k}_j(z, w, \theta)| \]
\[\leq \left(\sum_{j=0}^{\infty} |\partial_{\theta} \phi_j(\xi)| c_0^{j+1} \frac{j!}{|\xi|^j} \right) \]
\[\leq \delta^d |\xi|^d \left(\sum_{j=0}^{\infty} |\partial_{\theta} \phi_j(\xi)| c_0^{j+1} \frac{j!}{|\xi|^j} \right) \]

We now use the fact that \(\partial_{\theta} \phi_j(\xi) \) lives in the set \{\xi : 2Rj \leq |\xi| \leq 3Rj\};
\[\leq \text{constant} |\xi|^d \left(\sum_{j=0}^{\infty} c_0^{j+1} \frac{j!}{2Rj} \right) \]
Since \(j! / j! \leq e^{-j} \), the latter \(\leq \text{constant} |\xi|^d \sum_{j=0}^{\infty} (c_0/j^2) e^{-j} \).
Recalling that \(2Rj \leq |\xi| \leq 3Rj \), we get
\[\leq \text{constant} e^{-\frac{|\xi|^2}{4R}} \]
\[\leq \text{constant} e^{-\frac{|\xi|^2}{4R} |\theta|} \]

Thus for \((z, w, \theta) \in \mathcal{O}_K \times \mathcal{O}_K \times \mathcal{C} \), we have: \(|\hat{k}(z, w, \theta)| \leq \text{const.} |\theta|^d \)
and \(|\partial_{\theta} \hat{k}(z, w, \theta)| \leq \text{const.} e^{-\frac{|\xi|^2}{4R} |\theta|} \).

We may assume that the shape of \(\mathcal{C} \) has been modified to allow us to solve the Cauchy-Riemann equations in \(\mathcal{C} \) (see [5]) \(\partial_{\theta} \hat{k}_1 = \partial_{\theta} \hat{k} \) in such a way that the solution \(\hat{k}_1 \) is holomorphic with respect to \((z, w) \) in \(\mathcal{O}_K \times \mathcal{O}_K \) and the following estimate holds on sets of the kind \(K_1 \times K_2 \times \mathcal{C}(K_1, K_2 \subset \in \mathcal{O}_K) \) and \(\mathcal{C}_1 \) a cone whose closure is contained in \(\mathcal{C} \):
\[|\hat{k}_1(z, w, \theta)| \leq \text{const.} e^{-\frac{|\xi|^2}{4R} |\theta|} \]

Define then \(h = \hat{k} - \hat{k}_1 \). We now have, in \(\mathcal{O}_K \times \mathcal{O}_K \times \mathcal{C}_1 \), \(\partial_{\theta} \hat{h} = 0 \) and \(\hat{k} - \hat{h} \) decays exponentially as \(|\theta| \to \infty \) (uniformly, provided \((z, w, \theta) \) stays in sets like \(K_1 \times K_2 \times \mathcal{C}_1 \) as above).

This decay together with Theorem 2.1 of §2 imply that if for \(u \in \mathcal{E}'(U), U \)
sufficiently small, we define
\[\text{op} \hat{k}^\varepsilon u(x) = \left(\frac{1}{4\pi^3} \right)^{\frac{3}{2}} \int_U \int_{\mathbb{R}^3} e^{-\frac{1}{4\varepsilon}|Z(x) - Z(y)|^2} \cdot \hat{k}(Z(x), Z(y), \xi) u(y) dZ(y) d\xi \]
then as \(\varepsilon \to 0^+ \), \(\text{op} \hat{k}^\varepsilon \) will converge to an operator \(\text{op} \hat{k} \) having the properties in Theorem 2.1, §2. Moreover, for any \(u \in \mathcal{E}'(U) \), \(\text{op} \hat{k} u - \text{op} \hat{h} u \) is a hypo-analytic function. We will therefore replace \(\hat{k} \) by the hypo-analytic amplitude.
\(\hat{h} \) and think of \(\hat{h} \) as being the true amplitude constructed from the formal one given by \(\sum_{j=0}^{\infty} k_j(x, y, \theta) \).

4. Asymptotic expansion. Let \(k(x, y, \theta) \) be a hypo-analytic amplitude of degree \(d \) say \(k(x, y, \theta) = \hat{k}(Z(x), Z(y), \theta) \) where \(\hat{k} \) is holomorphic in \(\mathcal{O} \times \mathcal{O} \times \mathbb{C} \), \(\mathcal{O} \) and \(\mathbb{C} \) are as in §1. For each \(j = 1, \ldots, m \), let \(N_j \) denote the vector field \(N_j Z^k = -\sqrt{-1} \delta_j \).

If \(K \subset U \) is any compact subset, by Cauchy’s inequality we have \(c > 0 \) such that:

\[
\left| \frac{1}{\alpha!} \partial_\xi^\alpha N_j^\alpha k(x, x, \xi) \right| \leq c |\alpha|^{\alpha} \alpha! (1 + |\xi|)^{d-|\alpha|}
\]
for \(x \in K, \xi \in \mathbb{R}^m \).

Thus if we define

\[
k_j(x, \xi) = \sum_{|\alpha| = j} \frac{1}{\alpha!} \partial_\xi^\alpha N_j^\alpha k(x, x, \xi)
\]
then \(\sum_{j=0}^{\infty} k_j(x, \xi) \) can be thought of as a formal hypo-analytic symbol. Let \((\phi_j)_j \) be the cutoff functions of the previous section. If \(U' \) is any relatively compact subset of \(U \), we can form a true symbol by setting

\[
k(x, \xi) = \sum_{j=0}^{\infty} k_j(x, \xi) \phi_j(\xi)
\]
We then have two operators \(\text{op} k(x, y, \xi) \) and \(\text{op} \hat{k}(x, \xi) : \mathcal{E}'(U') \rightarrow D'(U') \)
where for \(u \in \mathcal{E}'(U') \),

\[
\text{op} \hat{k} u(x) = \lim_{\varepsilon \to 0^+} \left(\frac{1}{4\pi^3} \right)^{\frac{m}{2}} \int \int e^{-\varepsilon (|Z(x) - Z(y)|^2 + |\xi - \xi'|^2)} k(x, \xi) u(y) dZ(y) d\xi
\]
and

\[
\text{op} k u(x) = \lim_{\varepsilon \to 0^+} \left(\frac{1}{4\pi^3} \right)^{\frac{m}{2}} \int \int e^{-\varepsilon (|Z(x) - Z(y)|^2 + |\xi - \xi'|^2)} k(x, y, \xi) u(y) dZ(y) d\xi
\]

The next theorem proves that if \(U' \) is small enough, modulo a hypo-analytic regularizing operator, \(\text{op} k = \text{op} \hat{k} \).

Theorem 4.1. If the neighborhood \(U' \) is sufficiently small, \(\text{op} k \equiv \text{op} \hat{k} \) in the sense that for any \(u \in \mathcal{E}'(U') \), \(\text{op} k u - \text{op} \hat{k} \) is a hypo-analytic function.

Proof. Assume \(U' \) is an open ball centered at 0, its size to be determined later. We first take \(u \in \mathcal{E}^0(U') \). The theorem will be proved by first establishing:

(i) \(\text{op} k - \text{op} \hat{k} \) is in \(C^\infty(U') \), and

(ii) There exists \(c > 0 \) such that for all \(\alpha \in \mathbb{Z}^+ \),

\[
|M_\alpha^{\alpha} (\text{op} k - \text{op} \hat{k}) u(x)| \leq c |\alpha|^{\alpha} |\alpha|! \quad \text{where} \quad M_j = \sqrt{-1} N_j
\]
for each \(j = 1, \ldots, m \).
Taylor expansion in U' gives

$$k(x, y, \xi) = \sum_{|\alpha| \leq N} \frac{(Z(y) - Z(x))^{\alpha}}{\alpha!} \frac{\partial^{|\alpha|} k(x, x, \xi)}{\partial x^{|\alpha|}} + \sum_{|\alpha| = N+1} (Z(y) - Z(x))^{\alpha} k_\alpha(x, y, \xi)$$

where $k_\alpha(x, y, \xi) = (N + 1) \int_0^1 M_y^\alpha k(x, x + t(y - x), \xi)(1 - t)^N dt$.

For each $N = 1, 2, \ldots$ we define the amplitudes

$$k_N(x, y, \xi) = \phi_{N+1}(\xi) k(x, y, \xi), \quad \tilde{k}_N(x, y, \xi) = \sum_{j \leq N} \phi_j(\xi) k_j(x, \xi),$$

$$r_N(x, \xi) = \sum_{j \leq N} (\phi_{N+1}(\xi) - \phi_j(\xi)) k_j(x, \xi),$$

$$s_N(x, y, \xi) = \left(\sum_{|\alpha| = N+1} \frac{1}{\alpha!} D_\xi^\alpha k_\alpha(x, y, \xi) \right) \phi_{N+1}(\xi), \quad \text{and}$$

$$t_N(x, y, \xi) = \sum_{|\alpha| \leq N+1} \frac{1}{\alpha!} \{D_\xi^\alpha \phi_{N+1}(\xi) k_\alpha(x, y, \xi) - \phi_{N+1}(\xi) D_\xi^\alpha k_\alpha \}.$$

Let K_N, \tilde{K}_N, R_N, S_N and T_N denote the respective operators that are defined in the same fashion as op_k. We have

$$(op_k - op\tilde{k})u = (K_N - op_k)u + (op_k - K_N)u + R_Nu + S_Nu + T_Nu.$$

Our estimates will show that given any positive integer l, there exists a positive integer N such that each term on the right-hand side of the above equation is in C^l—thus establishing that $(op_k - op\tilde{k})u \in C^\infty(U')$.

(A) **Estimate of $M^\alpha (op_k - K_N)u$**. Since the ξ-support of

$$(1 - \phi_{N+1}(\xi))k(x, y, \xi)$$

is compact, $(op_k - K_N)u$ is hypo-analytic and therefore in particular, C^∞.

Suppose $|Z(x) - Z(y)| \leq A$ for all x, y in U'.

$$|\langle op_k - K_N \rangle u(x)\rangle| = \left(\frac{1}{4\pi^3}\right)^{\frac{d}{2}} \left| \int_{\mathbb{R}^d} \int_{|\xi| \leq 3R(N+1)} e^{-\frac{1}{4}(Z(x) - Z(y))^2} \cdot k(x, y, \xi)(1 - \phi_{N}(\xi)) dZ(y) d\xi \right|$$

$$\leq \text{const.} \int_{|\xi| \leq 3R(N+1)} e^{A|\xi|} (1 + |\xi|)^d d\xi$$

(the constant is independent of N)

$$\leq \text{const.} \left(e^{3RA} \right)^{N+1} (N+1)^{d+m}$$

$$\leq c_1^{N+1}$$

for some $c_1 > 0$ independent of N.
Moreover, since each \((\text{op} k - K_N)u\) is hypo-analytic in a common domain, for example some neighborhood of the compact set \(U'\), we can find a constant \(c_1 > 0\) independent of \(N\) such that for all \(\alpha \in \mathbb{Z}_m^+\),

\[
|M^\alpha(\text{op} k - K_N)u(x)| \leq c_1^{(|\alpha|+1)}c_1^{N+1}\alpha!
\]

(B) **Estimate of** \(M^\alpha(S_Nu)\). Write

\[
s_N(x, y, \xi) = \phi_{N+1}(\xi) \sum_{|\alpha| = N+1} D^\alpha_{\xi} \phi_{N}(x, y, \xi) = \phi_{N+1}(\xi)\hat{s}_N(x, y, \xi).
\]

For \(|\alpha| = N + 1\), we have

\[
\left|\frac{D^\alpha_{\xi} \phi_{N}(x, y, \xi)}{\alpha!}\right| \leq c_2^{(|\alpha|+1)}(1 + |\xi|)^{d-N-1}.
\]

It follows that \(|\hat{s}_N(x, y, \xi)| \leq c_2^{N+1}N!(1 + |\xi|)^{d-N-1}\) for some \(c_2 > 0\).

Let

\[
I^e_N(x) = \left(\frac{1}{4\pi^3}\right)^{\frac{q}{2}} \int \int e^{\sqrt{-1}(Z(x)-Z(y))\cdot\xi-\varepsilon|\xi|^2} \phi_{N+1}(\xi)\hat{s}_N(x, y, \xi)u(y)\,dZ(y)d\xi.
\]

We note that \(s_Nu(x) = \lim_{\varepsilon \to 0^+} I^e_N(x)\).

We will deform the path of \(\xi\)-integration from \(R_m\) to the image of \(R_m\) under the map

\[
\xi \to \theta(\xi) = \phi_{2N}(\xi)\zeta(\xi) + (1 - \phi_{2N}(\xi))\xi
\]

where

\[
\zeta(\xi) = \tilde{Z}_x(x)\xi + \sqrt{-1}(\tilde{Z}_x(x)\xi)(Z(x) - Z(y)).
\]

The deformation is allowed since it takes place in a region where \(\phi_{N+1}(\xi)\) is analytic.

We have

\[
|\theta(\xi)| = \left\{
\begin{array}{ll}
\xi, & \text{for } |\xi| \leq 4RN, \\
\zeta(\xi), & \text{for } |\xi| \geq 6RN.
\end{array}
\right.
\]

\[
|M^\alpha(I^e_N(x))| \leq \left(\frac{1}{4\pi^3}\right)^{\frac{q}{2}} \sum_{\beta < \alpha} \left(\frac{\alpha}{\beta}\right) \int \int |\xi|^{\alpha - \beta} e^{\sqrt{-1}(Z(x)-Z(y))\cdot\xi-\varepsilon|\xi|^2}
\cdot \phi_{N+1}(\xi) M^\beta \hat{s}_N(x, y, \xi)u(y)\,dZ(y)d\xi|
\]

We use the above contour and pass to the limit to get:

\[
|(M^\alpha s_Nu)(x)| \leq \left|\left(\frac{1}{4\pi^3}\right)^{\frac{q}{2}} \sum_{\beta \leq \alpha} \left(\frac{\alpha}{\beta}\right) \int_{2R(N+1) \leq |\xi| \leq 6RN} \int (\theta(\xi))^{\alpha - \beta}
\cdot e^{\sqrt{-1}(Z(x)-Z(y))\cdot\theta(\xi)} \phi_{N+1}(\xi) M^\beta \hat{s}_N(x, y, \xi)u(y)\,d\theta dZ(y)
\right|
\]

\[
+ \int_{|\xi| \geq 6RN} \int (\zeta(\xi))^{\alpha - \beta} e^{\sqrt{-1}(Z(x)-Z(y))\cdot\zeta(\xi)} \phi_{N+1}(\xi)
\cdot M^\beta \hat{s}_N(x, y, \zeta(\xi))u(y)\,dZ(y)d\xi
\]
We recall that the exponential in the second integral is bounded (§1, (1.1)). By hypo-analyticity we get $c_3 > 0$ such that
\[
\forall \beta, |M^\beta s_N(x, y, \xi)| \leq c_3 |\beta| + 1 \beta! c_2^{N+1} N!(1 + |\xi|)^{d-N-1}.
\]

These observations imply that
\[
|\alpha| \leq \alpha \omega_2 W' J_{2R(N+1)} < \alpha \omega_2 J_{2R(N+1)}
\]
\[
\int_{6RN \leq |\xi|} |\xi|^{\alpha + \beta + 2} c_3 \beta! N!(1 + |\xi|)^{d-N-1} d\xi
\]
for some $c_3 \geq \max(c_3, c_2)$. Hence, after modifying c_3 if necessary, we get
\[
|M^\alpha s_N u(x)| \leq \alpha! \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha - \beta)!} \int_{2R(N+1) \leq |\xi|} (1 + |\xi|)^{|\alpha - \beta| + d - N - 1} N! d\xi \right) c_3^N
\]
\[
\leq \alpha! c_3^N \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha - \beta)!} \left(\frac{1}{1 + 2RN} \right)^{\alpha - \beta - d - m + 1} N! \right)
\]
\[
\leq \alpha! c_3^N \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha - \beta)!} \left(1 + 2RN \right)^{|\alpha - \beta| + d + m - 1} \right) \left(\frac{1}{2R} \right)^N N!
\]
\[
\leq \alpha! c_3^N \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha - \beta)!} \left(|\alpha - \beta| + d + m - 1 \right) e^{1+2RN} \right) \left(\frac{1}{2Re} \right)^N Ne
\]
\[
\leq \alpha! c_3^N \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha - \beta)!} \left(|\alpha - \beta| + d + m - 1 \right) \right) \left(\frac{e^{2R}}{2Re} \right)^N Ne^2.
\]

Using the inequality: $(k + l)! \leq 2^{k+l} k! l!$ for any positive integers k and l, the latter is dominated by
\[
\alpha! c_3^N \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha - \beta)!} |\alpha - \beta|! \right) 2^{|\alpha| + d + m - 1} \left(\frac{e^{2R}}{2Re} \right)^N Ne^2.
\]

For $|\alpha| \leq N$, we can find another constant which we will still call c_3 such that the above quantity $\leq \alpha! c_3^N$.
(C) **Estimate of \(M^\alpha (\text{op} \hat{k} - \hat{K}_N)u \).** Let

\[
J^\alpha u(x) = \left(\frac{1}{4\pi^3} \right)^q \int \int e^{ \sqrt{-1}(Z(x) - Z(y)) \cdot \xi - e|\xi|^2 }
\cdot \left(\sum_{j > N} \phi_j(\xi) k_j(x, \xi) \right) u(y) dZ(y) d\xi .
\]

For each \(j > N \), we will use the contour

\[
\theta_j(\xi) = \phi_{2j}(\xi) \xi(\xi) + (1 - \phi_{2j}(\xi)) \xi = \begin{cases}
\xi, & \text{when } |\xi| \leq 4R_j, \\
\xi(\xi), & \text{when } |\xi| \geq 6R_j.
\end{cases}
\]

In the quantity

\[
M^\alpha(J^\alpha u)(x) = \left(\frac{1}{4\pi^3} \right)^q \sum_{j > N} \left[\sum_{\beta \leq \alpha} \left(\frac{\alpha}{\beta} \right) \int \int \theta_j(\xi) e^{ \sqrt{-1}(Z(x) - Z(y)) \cdot \theta_j(\xi) }
\cdot \phi_j(\xi) M^\beta k_j(x, \xi) u(y) dZ d\xi \right]
\]

we use the contours \(\theta_j \) in each term of the sum and take limits to get

\[
M^\alpha(\text{op} \hat{k} - \hat{K}_N)u(x) = \sum_{j > N} (I^1_j(x) + I^2_j(x))
\]

where

\[
I^1_j(x) = \left(\frac{1}{4\pi^3} \right)^q \sum_{\beta \leq \alpha} \left(\frac{\alpha}{\beta} \right) \int_{2R_j \leq |\xi| \leq 6R_j} \int \theta_j(\xi) e^{ \sqrt{-1}(Z(x) - Z(y)) \cdot \theta_j(\xi) }
\cdot \phi_j(\xi) M^\beta k_j(x, \theta_j(\xi)) u(y) dZ d\theta_j
\]

while \(I^2_j(x) \) is a similar expression except that the integration in \(\xi \) is carried out over the region \(\{ \xi : |\xi| \geq 6R_j \} \).

Assuming that \(|\alpha| \leq N - d - m \), we have

\[
|I^1_j(x)| \leq \text{const} . \sum_{\beta \leq \alpha} \left(\frac{\alpha}{\beta} \right) \int_{2R_j \leq |\xi| \leq 6R_j} (1 + |\xi|)^{d-j+|\alpha|-|\beta|} \left(e^{6R} \right)^j c_0^j |\beta| + 1 \beta! d\xi
\]

\[
\leq \text{const} . \left(c_0 e^{6R} \right)^j \alpha! \sum_{\beta \leq \alpha} \frac{1}{(\alpha - \beta)!} \int_{2R_j \leq |\xi| \leq 6R_j} (1 + |\xi|)^{d-j+|\alpha|-|\beta|} |j|! \left(e^{6R} \right)^j c_0^N
\]

\[
\leq \text{const} . \left(c_0 e^{6R} \right)^j \alpha! \sum_{\beta \leq \alpha} \frac{1}{(\alpha - \beta)!} \int_{0 \leq \rho \leq 6R_j} \rho^{d-j+|\alpha|-|\beta|+m-1} |j|! d\rho \left(e^{6R} \right)^j c_0^N
\]

(We have used the fact that \(d - j + |\alpha| \leq 0 \).)

\[
\leq \text{const} . \alpha! \left(\frac{c_0 e^{6R}}{6R} \right)^j (6R)^{d+m+N} c_0^N \left(\sum_{\beta \leq \alpha} \frac{1}{(\alpha - \beta)!} \right) .
\]
Therefore, for some \(\tilde{c}_4 > 0 \) independent of \(j \) and \(N \),
\[
|I_1^j(x)| \leq \alpha! c_4^{N+1} \left(\frac{c_0 e^{6RA}}{6R} \right)^j
\]
Similarly, after modifying the constant \(\tilde{c}_4 \) if necessary,
\[
|I_2^j(x)| \leq \text{const.} \alpha! \sum_{\beta \leq \alpha} \frac{1}{(\alpha - \beta)!} \left(\frac{1}{1 + 6Rj} \right)^{j-d-m-|\alpha| + |\beta|} c_0^{|\beta| + j + 1} j!
\]
\[
\leq \alpha! c_4^{N+1} \left(\frac{c_0}{6R} \right)^j
\]
We recall that \(c_0 \leq R \). At this point we choose \(U' \) so small that if \(A = \sup_{x, y \in U'} |Z(x) - Z(y)| \), then \(c_0 e^{6RA} < 6R \).
We then get a constant \(c_4 > 0 \) such that: \(|M^\alpha (\text{op} \tilde{K} - \tilde{K}_N) u(x)| \leq \alpha! c_4^{N+1} \) for \(|\alpha| \leq N - d - m \).

(D) Estimate of \(M^\alpha(R_N u) \).
\[
R_N u(x) = \left(\frac{1}{4\pi^2} \right)^{\frac{j}{2}} \int \int e^{\sqrt{-1}(Z(x) - Z(y)) \cdot \xi} u(y)
\]
\[
\cdot \left(\sum_{j \leq N} (\phi_{N+1}(\xi) - \phi_j(\xi)) k_j(x, \xi) \right) dZ(y) d\xi
\]
is hypo-analytic since each \(\phi_{N+1} - \phi_j \) is supported in \(2Rj \leq |\xi| \leq 3R(N + 1) \).

We estimate
\[
\left| \sum_{j \leq N} (\phi_{N+1}(\xi) - \phi_j(\xi)) k_j(x, \xi) \right| \leq \left(\sum_{j \leq N} c_0^{j+1} j! |\xi|^{-j} \right)|\xi|^d
\]
\[
\leq \left(\sum_{j \leq N} c_0^{j+1} j! \left(\frac{1}{2Rj} \right)^j \right)|\xi|^d \quad \text{(since } 2Rj \leq |\xi|\text{)}
\]
\[
\leq \left(\sum_{j \leq N} \left(\frac{c_0}{2Re} \right)^j \right) c_0 e|\xi|^d \quad \text{since } \frac{j!}{j!} \leq je^{-j+1}.
\]
It follows that
\[
|R_N u(x)| \leq \text{constant} \int_{|\xi| \leq 3R(N + 1)} |\xi|^d d\xi \leq \text{const.} 3R(N + 1)^{d+m}
\]
which in turn implies that there is a constant \(\tilde{c}_5 > 0 \) such that \(|R_N u(x)| \leq \tilde{c}_5^{N+1} \). Moreover, by hypo-analyticity, we get \(c_5 > 0 \) satisfying \(|M^\alpha R_N u(x)| \leq \alpha! c_5^{N+1} \) for all \(|\alpha| \leq N \).

(E) Estimate of \(M^\alpha(T_N u) \).
\[
T_N u(x) = \lim_{\varepsilon \to 0} \left(\frac{1}{4\pi^3} \right)^{\frac{j}{2}} \int \int e^{\sqrt{-1}(Z(x) - Z(y)) \cdot \xi - \varepsilon|\xi|^2} t_N(x, y, \xi) u(y) dZ(y) d\xi
\]
where
\[t_N(x, y, \xi) = \sum_{|\alpha| \leq N+1} \frac{1}{\alpha!} \{(D_{\xi}^\alpha (\phi_{N+1}(\xi)k_\alpha(x, y, \xi)) - \phi_{N+1}(\xi)D_{\xi}^\alpha k_\alpha(x, y, \xi)\}. \]

We can therefore take the limit under the integral sign and write
\[T_N u(x) = \sum_{|\alpha| \leq N+1} A_\alpha(x), \]
where for each \(\alpha, |\alpha| \leq N + 1, \)
\[A_\alpha(x) = \left(\frac{1}{4\pi^3}\right)^{|\alpha|} \sum_{0 \neq \beta \leq N} \int_{2R(N+1) \leq |\xi| \leq 3R(N+1)} \int e^{\sqrt{-1}Z((x) - Z(y))\xi} \frac{1}{\beta!} \]
\[\cdot (D_{\xi}^\beta \phi_{N+1}(\xi)) \frac{D_{\xi}^\alpha - \beta k_\alpha(x, y, \xi)}{(\alpha - \beta)!} u(y) dZ(y) d\xi. \]

Therefore
\[|A_\alpha(x)| \leq \text{const.} \alpha ! c_0^{|\alpha|+1} (e^{3R(N+1)} \sum_{0 \neq \beta \leq |\alpha|} \frac{1}{\beta!} \left[\frac{[3R(N+1)]^{d+m+1}}{[2R(N+1)]^{|\alpha| - |\beta|}} \right]^{|\beta|} \left(\frac{c_0}{R} \right)^{|\beta|} \]
\[\leq \text{const.} \frac{\alpha !}{[2R(N+1)]^{|\alpha|}} c_0^{|\alpha|+1} \left(\sum_{0 \leq \beta \leq |\alpha|} \frac{[2(N+1)c_0]^{|\beta|}}{\beta!} \right). \]

Since \(|\alpha| \leq N \) and \(R \) may be taken to be larger than 1, we know that the factor \(\frac{\alpha !}{[2R(N+1)]^{|\alpha|}} \leq 1. \) Therefore, we conclude that there is a constant \(c_6 \geq 0 \) for which \(|M''(T_N u)| \leq c_6^{N+1} N! \) whenever \(|\alpha| \leq N. \)

From (a)–(e) we conclude that there is a positive number \(c \) such that
\[|M''(\text{op } k - \text{op } \hat{k})u(x)| \leq c^{N+1} N! \]
for all \(\alpha, |\alpha| \leq N - m - d. \)

If we take \(|\alpha| = N - m - d \), we can get a constant \(\hat{c} \geq c \) satisfying:
\[\forall \alpha, |M''(\text{op } k - \text{op } \hat{k})u(x)| \leq \hat{c}^{|\alpha|+1} \alpha! \text{ for every } x \in U'. \]

By using integration by parts we also reach the same conclusion for \(u \in C_c^1(U'). \) Indeed all we need is a representation of the form \(u = \sum_{|\alpha| \leq N} M'' u_\alpha \)
where each \(u_\alpha \in C_c^0(U') \) which is always possible. We have thus shown that \((\text{op } k - \text{op } \hat{k})u \) is in \(C_{\alpha}^\infty(U') \) and that there is \(c > 0 \) such that for all \(\alpha \in Z^+, \)
\[|M''(\text{op } k - \text{op } \hat{k})u(x)| \leq c^{|\alpha|+1} \alpha!. \]

By Theorem 3.1 of [1] it follows that \(\text{op } k u - \text{op } \hat{k} u \) is a hypo-analytic function.
II. Applications

1. Parametrix for an elliptic operator. As an application of Theorem 4.1 we consider here the construction of a parametrix for an elliptic hypo-analytic differential operator. We will begin by composing a hypo-analytic differential operator A with a hypo-analytic pseudodifferential operator B. In [3] we introduced hypo-analytic differential operators. In the local chart (U, Z), the operator A is given by $A = \sum_{|\alpha| \leq n} a_{\alpha}(x) N^{\alpha}$ where each $a_{\alpha}(x)$ is a hypo-analytic function and $N_j = -\sqrt{-1} M_j$ for $j = 1, \ldots, m$.

Theorem 4.1 of the previous chapter allows us to represent the operator B by a symbol $b(x, \theta)$. From §2, Theorem 2.1 we know that both $B \circ A$ and $A \circ B$ are continuous linear maps from $\mathcal{E}'(U)$ to $\mathcal{D}'(U)$. We first assume that the operator $A = a(x) N^{\beta}$ for some hypo-analytic function $a(x)$ and some index β. Then $B(Au)(x)$ is by definition the limit as $\varepsilon \to +0$ of

$$B^\varepsilon (Au)(x) = \left(\frac{1}{4\pi^3} \right)^{\frac{n}{2}} \int \int e^{\sqrt{-1}(Z(x) - Z(y)) \cdot \xi - \varepsilon |\xi|^2} b(x, \xi) a(y) N^{\beta} u(y) dZ(y) d\xi.$$

On the other hand, $\lim_{\varepsilon \to 0^+} B^\varepsilon (Au)(x) = C \circ (N^{\beta} u)(x)$ where C is a hypo-analytic pseudodifferential operator with amplitude given by $b(x, \xi) a(y)$. Therefore, Theorem 4.1 tells us that C can be represented by the symbol $c(x, \xi) = \sum_{\alpha} \frac{\partial^\alpha b(a(x) \xi^{\beta})}{\alpha!}$. It follows that modulo a hypo-analytic function, we can write

$$B(Au)(x) = \lim_{\varepsilon \to 0^+} \left(\frac{1}{4\pi^3} \right)^{\frac{n}{2}} \int \int e^{\sqrt{-1}(Z(x) - Z(y)) \cdot \xi - \varepsilon |\xi|^2} c(x, \xi) u(y) dZ(y) d\xi.$$

The latter says that a symbol of $B \circ A$ is given by

$$\xi^{\beta} c(x, \xi) = \sum_{\alpha} \frac{\partial^\alpha b(a(x) \xi^{\beta})}{\alpha!}.$$

On the other hand, applying the operator A to

$$B^\varepsilon u(x) = \left(\frac{1}{4\pi^3} \right)^{\frac{n}{2}} \int \int e^{\sqrt{-1}(Z(x) - Z(y)) \cdot \xi - \varepsilon |\xi|^2} b(x, \xi) u(y) dZ(y) d\xi$$

gives

$$A(B^\varepsilon u(x)) = \left(\frac{1}{4\pi^3} \right)^{\frac{n}{2}} \int \int e^{\sqrt{-1}(Z(x) - Z(y)) \cdot \xi - \varepsilon |\xi|^2} \left(\sum_{\gamma \leq \beta} \xi^{\beta - \gamma} a(x) N^{\beta} b(x, \xi) \right) u(y) dZ d\xi$$

$$= \left(\frac{1}{4\pi^3} \right)^{\frac{n}{2}} \int \int e^{\sqrt{-1}(Z(x) - (Z(y)) \cdot \xi - \varepsilon |\xi|^2} \left(\sum_{\alpha} \frac{\partial^\alpha (a(x) \xi^{\beta}) N^{\alpha} b(x, \xi)}{\alpha!} \right) u(y) dZ d\xi.$$
This means that $A \circ B$ has a symbol given by
\[
\sum \frac{\partial^\alpha (a(x)\xi^\beta) N^\alpha b(x, \xi)}{\alpha!}
\]
By linearity, we will have the same formulas for the symbol of $B \circ A$ and $A \circ B$ when A is also given by $A = \sum_{|\alpha| \leq n} a_\alpha(x) N^\alpha$.
We have thus shown that if either A or B is hypo-analytic differential operator, the composition $A \circ B$ is hypo-analytic pseudodifferential operator with symbol
\[
\sum \frac{\partial^\alpha a(x, \xi) N^\alpha b(x, \xi)}{\alpha!}
\]
Definition 1.1. Let $P = \sum_{|\alpha| \leq k} a_\alpha(Z(x)) M^\alpha$ where the $a_\alpha(z)$ are holomorphic in a neighborhood of $Z(U)$ in C^m. We say a point $(x, \xi) \in T^* U \setminus \{0\}$ is in the characteristic set of P if the point $(Z(x), Z(x) \xi)$ is in the characteristic set of $P_Z = \sum_{|\alpha| \leq k} a_\alpha(z) (\frac{\partial}{\partial z})^\alpha$.
Notation. $\text{Char } P = \text{ the characteristic set of } P$ as given by Definition 1.1.

Definition 1.2. A hypo-analytic differential operator P is said to be elliptic at a point $x \in \Omega$ if for every $(x, \xi) \in T^* \Omega \setminus \{0\}$, $(x, \xi) \notin \text{Char } P$.

Now suppose $P = \sum_{|\alpha| \leq k} a_\alpha(Z(x)) M^\alpha$ is a hypo-analytic differential operator that is elliptic at our central point $0 \in U$. Since $Z(0) = 0$ and $dZ(0) = \Id$, we can find a neighborhood \mathcal{V} of 0 in C^m, a cone \mathcal{C} in C_m containing $R_m \setminus \{0\}$ and constants $c, R > 0$ such that: when $z \in \mathcal{V}$ and $\xi \in \mathcal{C}$, $|\xi| \geq R$ we have $|\sum_{|\alpha| \leq k} a_\alpha(z) \xi^\alpha| \geq c|\xi|^k$.

We now have all the ingredients we need to state

Theorem 1.1. Let A be hypo-analytic differential operator in Ω that is elliptic of order d. Given any relatively compact open subset Ω of Ω, there is a hypo-analytic pseudodifferential operator B in $\hat{\Omega}$ of order $-d$ such that $AB - I$ and $BA - I$ are hypo-analytic regularizing in $\hat{\Omega}$.

The proof of this theorem is a simple adaptation of that of the corresponding theorem for analytic pseudodifferential operators as given by Treves [8]. Therefore we omit it.

2. Propagation of hypo-analyticity. In [3] it was shown that hypo-analytic singularities for solutions propagate along the bicharacteristics of hypo-analytic differential operators. Here we extend this result to what may be called classical hypo-analytic pseudodifferential operator. This result may also be viewed as an extension of a theorem of Hanges [4].

We will work in the hypo-analytic local chart (U, Z) of Chapter I. Let P be a classical hypo-analytic pseudodifferential operator with principal symbol p. Let $t \rightarrow (x(t), \xi(t)) = \gamma(t)$ be a curve in $T^* U \setminus \{0\}$ and set $\hat{\gamma}(t) = (\hat{x}(t), \hat{\xi}(t)) = (Z(x(t)), \hat{Z}_x(x(t)) \xi(t))$.

Definition 2.1. The curve \(\gamma(t) \) is said to be a bicharacteristic for \(P \) if the equations
\[
\frac{d\tilde{x}}{dt} = \frac{\partial p}{\partial \xi}(\tilde{x}(t), \tilde{\xi}(x)), \quad \frac{d\tilde{\xi}}{dt} = -\frac{\partial p}{\partial z}(\tilde{x}(t), \tilde{\xi}(t))
\]
hold.

We can now state the theorem of this section.

Theorem 2.1. Assume \(p(0, \xi_0) = 0 \) and \(P \) is of principal type at \((0, \xi_0) \). Suppose \(\gamma = \{(x(t), \xi(t))\} \) is a bicharacteristic for \(P \) through \((x(0), \xi(0)) = (0, \xi_0) \) and that \(Pu \) is hypo-analytic on \(\gamma \). Then either \(u \) is hypo-analytic at every point of \(\gamma \) or \(u \) is not hypo-analytic at any point of \(\gamma \).

The proof will use a version of the FBI transform as developed by Sjöstrand in [7]. We will therefore first discuss Sjöstrand's FBI transformations adapted to our situation here.

Let \(H \) be a totally real submanifold of \(C^m \) of maximal dimension with defining functions \(h_1, \ldots, h_m \).

Define
\[
\Lambda_H = \left\{ (x, \frac{2}{i} \partial h(x)) : h \in C^\infty(C^m, R), h \equiv 0 \text{ on } H \right\}.
\]

Note that if \(x_0 \in H \), then \((x_0, \xi_0) \in \Lambda_H \) iff \(\exists \) real numbers \(t_1, \ldots, t_m \) such that
\[
\xi_0 = \frac{2}{i} \sum_{j=1}^m t_j \partial h_j(x_0).
\]

Fix a point \((y_0, \eta_0) \in \Lambda_H \). Let \(\varphi \) be a holomorphic function defined near \((x_0, y_0) \)
\begin{align*}
(2.1) \quad \frac{\partial \varphi}{\partial y}(x_0, y_0) &= -\eta_0, \\
(2.2) \quad \det \frac{\partial^2 \varphi}{\partial x \partial y}(x_0, y_0) &\neq 0, \\
(2.3) \quad \Re \varphi_{y y}(x_0, y_0) \mid_{T_{y_0}H \times T_{y_0}H} &> 0.
\end{align*}

Here \(\Re \varphi \) is considered as a function on \(C^n \times H \), defined locally.

Set
\[
\varphi_1(x, y) = -\Re \varphi(x, y).
\]

Condition (2.1) implies that \(H \ni y \mapsto \varphi_1(x_0, y) \) has a critical point at \(y_0 \) since \(\frac{\partial \varphi}{\partial y}(x_0, y_0) = \frac{\partial \varphi}{\partial y}(x_0, y_0) = -\eta_0 \) and that therefore \(d_y \varphi_1(x_0, y_0) = d_h(y_0) \) for some \(h \) vanishing on \(H \). This together with condition (2.3) and the implicit function theorem give us neighborhoods \(N(x_0) \) of \(x_0 \) in \(C^m \), \(N(y_0) \) of \(y_0 \) in \(H \) and a unique \(C^\infty \) function \(y = y(x) : N(x_0) \to N(y_0) \) such that \(y(x) \) is the unique critical point for \(H \ni y \mapsto \varphi_1(x, y) \), \(x \in N(x_0) \). We next note that for \(x \in N(x_0) \), \((y(x), -\frac{2}{i} \frac{\partial \varphi}{\partial y}(x, y(x))) \in \Lambda_H \). Indeed, this follows from the fact that \(H \ni y \mapsto \varphi_1(x, y) \) has a critical point at \(y(x) \) and that \(h_1, \ldots, h_m \) are the defining functions for \(H \).
For \(x \in N(x_0) \), let \(\eta(x) = -\frac{-2}{i} \frac{\partial \varphi}{\partial y}(x, y(x)) \). Then
\[
(y(x), \eta(x)) = \left(y(x), -\frac{-2}{i} \frac{\partial \varphi}{\partial y}(x, y(x)) \right) \in \Lambda_H.
\]
Moreover, for \(x \in N(x_0) \), \(y(x) \) is the unique point in \(N(y_0) \) such that
\[
\frac{-\partial \varphi}{\partial y}(x, y(x)) = -\frac{-2}{i} \frac{\partial \varphi}{\partial y}(x, y(x)) \in (\Lambda_H)_{y(x)}.
\]
This is due to the uniqueness of the critical point.

Let \(\Phi(x) = \varphi_1(x, y(x)) \). Let \(a(x, y, \lambda) \) be a classical analytic symbol defined near \((x_0, y_0) \) and elliptic at this point. For \(\Psi \) a real-valued function defined on an open set \(W \) in \(C^m \), we define the space \(H^\text{loc}_\Psi(W) = \{ v : W \times \mathbb{R} \to \mathbb{C} : v(z, \lambda) \) is holomorphic in \(z \) and for any \(K \subset W \) and \(\varepsilon > 0 \) \(\exists \delta \exists |v(z, \lambda)| \leq c e^{\delta (|\Psi(z)|+\varepsilon)} \) for all \(z \in K, \lambda \geq 1 \} \).

Let \(u \in D'(N(y_0)) \), and for \(z \in N(x_0) \) set
\[
Tu(z, \lambda) = \int_{H} e^{i\lambda \Phi(z, y)} a(z, y, \lambda) \chi(y) u(y) dy
\]
where \(\chi \in C^\infty(\mathbb{N}(y_0)) \), \(\chi \equiv 1 \) near \(y_0 \).

Here we are assuming that the neighborhoods \(N(y_0) \) and \(N(x_0) \) have been contracted so that the symbol \(a \) and the phase function \(\varphi \) are defined. It is easily checked that
\[
T : D'(N(y_0)) \to H^\text{loc}_\Phi(N(x_0)).
\]

In the sequel, \(WF_{h}u \) denotes the hypo-analytic wave front set of Baouendi-Chang-Treves [1]. Our proof of Theorem 2.1 will use the following proposition of Sjöstrand [7].

Proposition 2.1. Let \(z_1 \in N(y_0) \). Then \((y(z_1), \eta(z_1)) \notin WF_{h}u \) iff \(Tu \in H^\text{loc}_{\Phi-\xi_0}(W) \) for some \(\xi_0 > 0 \) and some neighborhood \(W \) of \(z_1 \).

Proof of Theorem 2.1. In order to obtain a suitable phase function, we will need the following two lemmas from [6]. For notational convenience we will use \(y_0 \) for \(0 \in Z(U) = H \).

Lemma 2.1. Set \(z_0 = (y_0' - i\xi_0', 0) \in C^{n-1} \times C \). There exists a holomorphic function \(\varphi \) defined near \((z_0, y_0) \) which solves
\[
\frac{\partial \varphi}{\partial z_n}(z, y) = p \left(y, \frac{-\partial \varphi}{\partial y}(z, y) \right)
\]
and satisfies (2.1)–(2.3) with \(\eta_0 = \xi_0 \).

We remark that the lemma is proved by using the Cauchy-Kovalevska theorem, which guarantees the existence of a holomorphic \(\varphi \) that solves the initial value problem
\[
\frac{\partial \varphi}{\partial z_n} = p \left(y, \frac{-\partial \varphi}{\partial y} \right)
\]
and
\[\varphi(z, 0, y) = \frac{i}{2} \sum_{j=1}^{n-1} (z_j - y_j)^2 - (\xi_0)_n y_n + iC(y_n - (y_0)_n)^2 \]
where \(RC \) is chosen sufficiently large. In the sequel, the neighborhoods \(N(z_0), N(y_0) \) and the function \(\Phi \) are related to the \(\varphi \) of Lemma 2.1 as before.

Lemma 2.2. There is an elliptic analytic symbol \(a(z, y, \lambda) \) such that the FBI transformation \(T \) with phase \(\varphi \) and symbol \(a \) satisfies \(D_{z_n} T = TP \) in \(H_{\Phi_{-e}}^{loc}(W) \).

That is, if \(Y \subseteq Z(U) = H \) is a small neighborhood of \(y_0 \), then for \(z \) in \(W \subseteq C^m \) a small neighborhood of \(z_0 = (y'_0 - i\xi'_0, 0) \) and \(u \in \mathcal{E}'(Y) \) we have
\[D_{z_n} Tu - TPu \in H_{\Phi_{-e}}^{loc}(W) \]
for some \(e > 0 \).

The symbol \(a(z, y, \lambda) \) is constructed by solving the transport equations at each degree of homogeneity.

We recall now that
\[\gamma(t) = (\hat{x}(t), \hat{\xi}(t)) \]
and
\[\gamma(0) = (y_0, \xi_0) = (Z(x(0)), \dot{Z}_x(x(0))\xi_0). \]

Write \(y_0 = (y'_0, (y_n)_n) \) and \(\xi_0 = (\xi'_0, (\xi_n)_n) \).

We will use the equations
\[\frac{\partial \varphi}{\partial z}(z, y) = p \left(y, -\frac{\partial \varphi}{\partial y}(z, y) \right), \]
and
\[\frac{\partial \varphi}{\partial y}(z_0, y_0) = -\xi_0 \]
to prove that
\[\hat{\xi}(t) = -\frac{\partial \varphi}{\partial y}(y'_0 - i\xi'_0, t, \hat{x}(t)) \]
We recall that
\[\frac{d}{dt} = \frac{\partial}{\partial \xi} \quad \text{and} \quad \frac{d}{dt} = -\frac{\partial}{\partial x}. \]

Hence
\[\frac{d}{dt} \left[\frac{\partial \varphi}{\partial y}(y'_0 - i\xi'_0, t, \hat{x}(t)) \right] = \varphi_{y\zeta}(y'_0 - i\xi'_0, t, \hat{x}(t)) + \varphi_{yy}(y'_0 - i\xi'_0, t, \hat{x}(t)) \frac{d\hat{x}}{dt} \]
\[\frac{d}{dt} \left[\frac{\partial \varphi}{\partial y}(y'_0 - i\xi'_0, t, \hat{x}(t)) + \varphi_{yy}(y'_0 - i\xi'_0, t, \hat{x}(t)) \frac{\partial}{\partial \xi}(\hat{x}(t), \hat{\xi}(t)) \right] \]
Now (2.4) implies that
\[\varphi_{yz}(z, y) = \frac{\partial p}{\partial y} \left(y, -\frac{\partial \varphi}{\partial y} \right) - \frac{\partial p}{\partial \zeta} \left(y, -\frac{\partial \varphi}{\partial y} \right) \varphi_{yy}(z, y). \]
It follows that
\[
\frac{d}{dt} \left[-\frac{\partial \phi}{\partial y} (y_0' - i\xi_0', t, \hat{x}(t)) \right]
\]
\begin{equation}
(2.5)
= -\frac{\partial p}{\partial y} \left(\hat{x}(t), -\frac{\partial \phi}{\partial y} (y_0' - \xi_0', t, \hat{x}(t)) \right).
\end{equation}

\[
+ \frac{\partial p}{\partial \zeta} \left(\hat{x}(t), -\frac{\partial \phi}{\partial y} (y_0' - i\xi_0', t, \hat{x}(t)) \right) \phi_{yy} (y_0' - i\xi_0', t, \hat{x}(t))
\]
\[
- \phi_{yy} (y_0' - i\xi_0', t, \hat{x}(t)) \frac{\partial p}{\partial \zeta} (\hat{x}(t), \hat{\xi}(t)).
\]

But \(\hat{\xi}(t) \) also satisfies (2.5) since
\[
\frac{d\hat{\xi}}{dt} = -\frac{\partial p}{\partial y} (\hat{x}(t), \hat{\xi}(t)) + \frac{\partial p}{\partial \zeta} (\hat{x}(t), \hat{\xi}(t)) \phi_{yy} (y_0' - i\xi_0', t, \hat{x}(t))
\]
\[
- \phi_{yy} (y_0' - i\xi_0', t, \hat{x}(t)) \frac{\partial p}{\partial \zeta} (\hat{x}(t), \hat{\xi}(t))
\]
\[
= -\frac{\partial p}{\partial y} (\hat{x}(t), \hat{\xi}(t)).
\]

Moreover, by 2.4, \(-\frac{\partial p}{\partial y} (y_0' - i\xi_0', 0, y_0) = \xi_0 = \hat{\xi}(0) \).

We conclude that
\begin{equation}
(2.6)
\hat{\xi}(t) = -\frac{\partial \phi}{\partial y} (y_0' - i\xi_0', t, \hat{x}(t)).
\end{equation}

For \(t \in [0, 1] \), let
\[
z(t) = z_0 + (0', t) = (y_0' - i\xi_0', t) \in C^{n-1} \times \mathbb{R}.
\]

We now recall that for \(z \) near \(z_0 \), \(y(z) \) is the unique point in \(N(y_0) \subseteq H \) such that
\[
y(z_0) = y_0 \quad \text{and} \quad \frac{\partial \phi}{\partial y} (z, y(z)) \in (\Lambda_H)_{y(z)}.
\]

But by (2.6), \(\hat{\xi}(t) = -\frac{\partial \phi}{\partial y} (z(t), \hat{x}(t)) \) and since the forms \(\frac{1}{i} \partial h_1, \ldots, \frac{1}{i} \partial h_n \) are real on \(H = Z(U) \) and span all of \(T^*H \), we know that
\[
\hat{\xi}(t) = Z_{x}(x(t))\xi(t) \in (\Lambda_H)_{x(t)}.
\]

It therefore follows that
\[
y(z(t)) = \hat{x}(t).
\]

In our previous notation,
\[
\eta(z(t)) = -\frac{\partial \phi}{\partial y} (z(t), y(z)) = -\frac{\partial \phi}{\partial y} (z(t), \hat{x}(t)) = \hat{\xi}(t).
\]

Thus
\begin{equation}
(2.7)
(\hat{x}(t), \hat{\xi}(t)) = (y(z(t)), \eta(z(t))).
\end{equation}

Since \(WF_{ha}(Pu) \cap \gamma = \emptyset \) and \(\gamma \) is compact, (2.7) and Proposition (2.1) tell us that
\[
T(Pu) \subseteq H_{\Phi-\epsilon_0}(N)
\]
for some $\varepsilon_0 > 0$ and a neighborhood N of $\{z(t) = 0 \leq t \leq 1\}$ in C^m. If W is chosen as in Lemma 2.2, then

$$D_{z_n} Tu \in H^\text{loc}_{\Phi - \varepsilon_0}(N \cap W).$$

This may require a modification of ε_0.

Now $z(0) = z_0 \in N \cap W$. Therefore, $\exists t_1 > 0$ such that $N \cap W$ is a neighborhood of $\{z(t) : 0 \leq t \leq t_1\}$. It is crucial to note that the size of t_1 is independent of the distribution u.

If now K is a compact neighborhood of $\{z(t) : 0 < t < t_1\}$, then $\exists c > 0$ such that

$$|D_{z_n} Tu(z, \lambda)| \leq ce^{\lambda(\Phi(z) - \frac{t_0}{2})} \quad \forall z \in K \text{ and } \lambda \geq 1. \quad (2.8)$$

If $(y_0, \xi_0) = (y(z(0)), \eta(z(0))) \notin WF_{ha} u$, we know that, after modifying c and ε_0,

$$|Tu(z, \lambda)| \leq ce^{\lambda(\Phi(z) - \frac{t_0}{2})} \quad \forall \lambda \geq 1 \text{ and } \forall z \text{ near } z_0. \quad (2.9)$$

From (2.7), (2.8) and (2.9), it follows that

$$WF_{ha}(u) \cap \{(y(t), \xi(t)) : 0 \leq t \leq t_1\} = \emptyset.$$

REFERENCES

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19122