Inner functions and cyclic vectors in the Bloch space
HTML articles powered by AMS MathViewer
- by J. M. Anderson, J. L. Fernández and A. L. Shields
- Trans. Amer. Math. Soc. 323 (1991), 429-448
- DOI: https://doi.org/10.1090/S0002-9947-1991-0979966-6
- PDF | Request permission
Abstract:
In this paper we construct a singular inner function whose polynomial multiples are dense in the little Bloch space ${\mathcal {B}_0}$. To do this we construct a singular measure on the unit circle with "best possible" control of both the first and second differences.References
- J. M. Anderson, Bloch functions: the basic theory, Operators and function theory (Lancaster, 1984) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 153, Reidel, Dordrecht, 1985, pp. 1–17. MR 810441
- J. M. Anderson, K. F. Barth, and D. A. Brannan, Research problems in complex analysis, Bull. London Math. Soc. 9 (1977), no. 2, 129–162. MR 440018, DOI 10.1112/blms/9.2.129
- J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37. MR 361090
- S. N. Bernšteĭn, On majorants of finite or quasi-finite growth, Doklady Akad. Nauk SSSR (N.S.) 65 (1949), 117–120 (Russian). MR 0030613
- Leon Brown and Allen L. Shields, Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285 (1984), no. 1, 269–303. MR 748841, DOI 10.1090/S0002-9947-1984-0748841-0
- D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probability 1 (1973), 19–42. MR 365692, DOI 10.1214/aop/1176997023
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- P. L. Duren, H. S. Shapiro, and A. L. Shields, Singular measures and domains not of Smirnov type, Duke Math. J. 33 (1966), 247–254. MR 199359
- Philip Hartman and Richard Kershner, The Structure of Monotone Functions, Amer. J. Math. 59 (1937), no. 4, 809–822. MR 1507284, DOI 10.2307/2371350
- J.-P. Kahane, Trois notes sur les ensembles parfaits linéaires, Enseign. Math. (2) 15 (1969), 185–192 (French). MR 245734
- Boris Korenblum, Cyclic elements in some spaces of analytic functions, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 3, 317–318. MR 628662, DOI 10.1090/S0273-0979-1981-14943-0
- George Piranian, Allen L. Shields, and James H. Wells, Bounded analytic functions and absolutely continuous measures, Proc. Amer. Math. Soc. 18 (1967), 818–826. MR 215067, DOI 10.1090/S0002-9939-1967-0215067-4
- James W. Roberts, Cyclic inner functions in the Bergman spaces and weak outer functions in $H^p,\ 0<p<1$, Illinois J. Math. 29 (1985), no. 1, 25–38. MR 769756
- L. A. Rubel and A. L. Shields, The space of bounded analytic functions on a region, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 235–277. MR 198281
- L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276–280. MR 0276744
- Harold S. Shapiro, Weakly invertible elements in certain function spaces, and generators in ${\cal l}_{1}$, Michigan Math. J. 11 (1964), 161–165. MR 166343
- Harold S. Shapiro, Monotonic singular functions of high smoothness, Michigan Math. J. 15 (1968), 265–275. MR 232896 Joel Shapiro, Cyclic inner functions in Bergman spaces, preprint, 1980 (not for publication).
- Allen L. Shields, Cyclic vectors in Banach spaces of analytic functions, Operators and function theory (Lancaster, 1984) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 153, Reidel, Dordrecht, 1985, pp. 315–349. MR 810450
- Allen L. Shields and David L. Williams, Bounded projections, duality, and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299(300) (1978), 256–279. MR 487415
- Allen L. Shields and D. L. Williams, Bounded projections and the growth of harmonic conjugates in the unit disc, Michigan Math. J. 29 (1982), no. 1, 3–25. MR 646368
- E. M. Stein and A. Zygmund, On the differentiability of functions, Studia Math. 23 (1963/64), 247–283. MR 158955, DOI 10.4064/sm-23-3-247-283
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 323 (1991), 429-448
- MSC: Primary 46J15; Secondary 30H05, 46E15, 47B38
- DOI: https://doi.org/10.1090/S0002-9947-1991-0979966-6
- MathSciNet review: 979966