Circuit partitions and the homfly polynomial of closed braids
HTML articles powered by AMS MathViewer
- by François Jaeger
- Trans. Amer. Math. Soc. 323 (1991), 449-463
- DOI: https://doi.org/10.1090/S0002-9947-1991-0986693-8
- PDF | Request permission
Abstract:
We present an expansion of the homfly polynomial $P(D,z,a)$ of a braid diagram $D$ in terms of its circuit partitions. Another aspect of this result is an expression of $P(D,z,a)$ as the trace of a matrix associated to $D$ in a simple way. We show how certain degree properties of the homfly polynomial can be derived easily from this model. In particular we obtain that if $D$ is a positive braid diagram on $n$ strings with $w$ crossings, the maximum degree of $P(D,z,a)$ in the variable $a$ equals $n - 1 - w$. Nous présentons une expansion pour le polynôme homfly $P(D,z,a)$ d’un diagramme de tresse $D$ en termes de ses partitions en circuits. Un autre aspect de ce résultat consiste en une expression de $P(D,z,a)$ comme trace d’une matrice associee de façon simple à $D$. Nous montrons comment certaines propriétés de degré du polynôme homfly dérivent simplement de ce modèle. En particulier nous obtenons que pour un diagramme de tresse positif $D$ à $n$ brins et $w$ croisements, le degré maximum de $P(D,z,a)$ en la variable $a$ est égal à $n - 1- w$.References
- J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), no. 2, 275–306. MR 1501429, DOI 10.1090/S0002-9947-1928-1501429-1
- Claude Berge, Graphes et hypergraphes, Collection Dunod Université, Série Violette, No. 604, Dunod, Paris-Brussels-Montreal, Que., 1973 (French). Deuxième édition. MR 0357171
- J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976. MR 0411988
- Gerhard Burde and Heiner Zieschang, Knots, De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 1985. MR 808776
- J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329–358. MR 0258014
- John Franks and R. F. Williams, Braids and the Jones polynomial, Trans. Amer. Math. Soc. 303 (1987), no. 1, 97–108. MR 896009, DOI 10.1090/S0002-9947-1987-0896009-2
- P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 239–246. MR 776477, DOI 10.1090/S0273-0979-1985-15361-3
- Pierre de la Harpe, Michel Kervaire, and Claude Weber, On the Jones polynomial, Enseign. Math. (2) 32 (1986), no. 3-4, 271–335. MR 874691
- Jim Hoste, A polynomial invariant of knots and links, Pacific J. Math. 124 (1986), no. 2, 295–320. MR 856165
- François Jaeger, Composition products and models for the homfly polynomial, Enseign. Math. (2) 35 (1989), no. 3-4, 323–361 (English, with French summary). MR 1039950
- François Jaeger, A combinatorial model for the Homfly polynomial, European J. Combin. 11 (1990), no. 6, 549–558 (English, with French summary). MR 1078711, DOI 10.1016/S0195-6698(13)80040-6
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI 10.2307/1971403 —, Notes on a talk in Atiyah’s seminar, November 1986.
- Louis H. Kauffman, Formal knot theory, Mathematical Notes, vol. 30, Princeton University Press, Princeton, NJ, 1983. MR 712133
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7 —, State models for knot polynomials—An introduction, Proc. 1987 Winter Meeting of the Brasilian Mathematical Society. —, Knots, abstract tensors and the Yang-Baxter equation, preprint.
- W. B. R. Lickorish and Kenneth C. Millett, A polynomial invariant of oriented links, Topology 26 (1987), no. 1, 107–141. MR 880512, DOI 10.1016/0040-9383(87)90025-5
- H. R. Morton, Seifert circles and knot polynomials, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 1, 107–109. MR 809504, DOI 10.1017/S0305004100063982
- H. R. Morton and H. B. Short, The $2$-variable polynomial of cable knots, Math. Proc. Cambridge Philos. Soc. 101 (1987), no. 2, 267–278. MR 870598, DOI 10.1017/S0305004100066627
- Kunio Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187–194. MR 895570, DOI 10.1016/0040-9383(87)90058-9
- Józef H. Przytycki and PawełTraczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1988), no. 2, 115–139. MR 945888
- Morwen B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297–309. MR 899051, DOI 10.1016/0040-9383(87)90003-6
- V. G. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), no. 3, 527–553. MR 939474, DOI 10.1007/BF01393746
- Pierre Vogel, Représentations et traces des algèbres de Hecke. Polynôme de Jones-Conway, Enseign. Math. (2) 34 (1988), no. 3-4, 333–356 (French). MR 979646
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 323 (1991), 449-463
- MSC: Primary 57M25; Secondary 57M15
- DOI: https://doi.org/10.1090/S0002-9947-1991-0986693-8
- MathSciNet review: 986693