Sobolev interpolation inequalities with weights
HTML articles powered by AMS MathViewer
- by Cristian E. Gutiérrez and Richard L. Wheeden
- Trans. Amer. Math. Soc. 323 (1991), 263-281
- DOI: https://doi.org/10.1090/S0002-9947-1991-0994166-1
- PDF | Request permission
Abstract:
We study weighted local Sobolev interpolation inequalities of the form \[ \begin {gathered} \frac {1} {{{w_2}(B)}}{\int \limits _B {|u(x){|^{ph}}{w_2}(x)dx \leq c\left ( {\frac {1} {{v(B)}}\int \limits _B {|u(x){|^p}v(x)dx} } \right )} ^{h - 1}} \hfill \\ \times \left ( {\frac {{|B{|^{p/n}}}} {{{w_1}(B)}}\int \limits _B {|\nabla u(x){|^p}{w_1}(x)dx + \frac {1} {{v(B)}}} \int \limits _B {|u(x){|^p}v(x)dx} } \right ), \hfill \\ \end {gathered} \], where $1 < p < \infty ,h > 1, B$ is a ball in ${{\mathbf {R}}^n}$, and $v$ ,${w_1}$, and ${w_2}$ are weight functions. The case $p = 2$ is of special importance in deriving regularity results for solutions of degenerate parabolic equations. We also study the analogous inequality without the second summand on the right in the case $u$ has compact support in $B$, and we derive global Landau inequalities ${\left \| {\nabla u} \right \|_{L_w^q}} \leq c\left \| {\nabla u} \right \|_{L_v^p}^{1 - a}\left \| {{\nabla ^2}u} \right \|_{L_v^p}^a,0 < a < 1,1 < p \leq q < \infty$, when $u$ has compact support.References
- R. C. Brown and D. B. Hinton, Weighted interpolation inequalities of sum and product form in $\textbf {R}^n$, Proc. London Math. Soc. (3) 56 (1988), no. 2, 261–280. MR 922656, DOI 10.1112/plms/s3-56.2.261
- C. Carton-Lebrun and H. P. Heinig, Weighted norm inequalities involving gradients, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), no. 3-4, 331–341. MR 1014662, DOI 10.1017/S0308210500018795
- Sagun Chanillo and Richard L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math. 107 (1985), no. 5, 1191–1226. MR 805809, DOI 10.2307/2374351
- Filippo M. Chiarenza and Raul P. Serapioni, A Harnack inequality for degenerate parabolic equations, Comm. Partial Differential Equations 9 (1984), no. 8, 719–749. MR 748366, DOI 10.1080/03605308408820346
- Filippo Chiarenza and Raul Serapioni, A remark on a Harnack inequality for degenerate parabolic equations, Rend. Sem. Mat. Univ. Padova 73 (1985), 179–190. MR 799906
- J. A. Goldstein, M. K. Kwong, and A. Zettl, Weighted Landau inequalities, J. Math. Anal. Appl. 95 (1983), no. 1, 20–28. MR 710417, DOI 10.1016/0022-247X(83)90133-6
- Cristian E. Gutiérrez and Gail S. Nelson, Bounds for the fundamental solution of degenerate parabolic equations, Comm. Partial Differential Equations 13 (1988), no. 5, 635–649. MR 919445, DOI 10.1080/03605308808820555
- Cristian E. Gutiérrez and Richard L. Wheeden, Mean value and Harnack inequalities for degenerate parabolic equations, Colloq. Math. 60/61 (1990), no. 1, 157–194. MR 1096367, DOI 10.4064/cm-60-61-1-157-194
- David Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J. 53 (1986), no. 2, 503–523. MR 850547, DOI 10.1215/S0012-7094-86-05329-9
- Robert V. Kohn, New integral estimates for deformations in terms of their nonlinear strains, Arch. Rational Mech. Anal. 78 (1982), no. 2, 131–172. MR 648942, DOI 10.1007/BF00250837
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- J. Moser, On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math. 24 (1971), 727–740. MR 288405, DOI 10.1002/cpa.3160240507
- F. O. Porper and S. D. Èĭdel′man, Two-sided estimates of the fundamental solutions of second-order parabolic equations and some applications of them, Uspekhi Mat. Nauk 39 (1984), no. 3(237), 107–156 (Russian). MR 747792 E. T. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals in Euclidean and homogeneous spaces (to appear).
- L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), no. 3, 259–275. MR 768824
- Chang Shou Lin, Interpolation inequalities with weights, Comm. Partial Differential Equations 11 (1986), no. 14, 1515–1538. MR 864416, DOI 10.1080/03605308608820473
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 323 (1991), 263-281
- MSC: Primary 46E99; Secondary 35B45, 46M35
- DOI: https://doi.org/10.1090/S0002-9947-1991-0994166-1
- MathSciNet review: 994166