Genericity of nontrivial $H$-superrecurrent $H$-cocycles
HTML articles powered by AMS MathViewer
- by Karma Dajani
- Trans. Amer. Math. Soc. 323 (1991), 111-132
- DOI: https://doi.org/10.1090/S0002-9947-1991-1018574-8
- PDF | Request permission
Abstract:
We prove that most ${\text {H}}$-cocycles for a nonsingular ergodic transformation of type ${\text {II}}{{\text {I}}_\lambda }$, $0 < \lambda < 1$, are ${\text {H}}$-superrecurrent. This is done by showing that the set of nontrivial ${\text {H}}$-superrecurrent ${\text {H}}$-cocycles form a dense ${G_\delta }$ set with respect to the topology of convergence in measure.References
- Giles Atkinson, Recurrence of co-cycles and random walks, J. London Math. Soc. (2) 13 (1976), no. 3, 486–488. MR 419727, DOI 10.1112/jlms/s2-13.3.486
- J. R. Choksi, J. M. Hawkins, and V. S. Prasad, Abelian cocycles for nonsingular ergodic transformations and the genericity of type $\textrm {III}_1$ transformations, Monatsh. Math. 103 (1987), no. 3, 187–205. MR 894170, DOI 10.1007/BF01364339
- J. R. Choksi and Shizuo Kakutani, Residuality of ergodic measurable transformations and of ergodic transformations which preserve an infinite measure, Indiana Univ. Math. J. 28 (1979), no. 3, 453–469. MR 529678, DOI 10.1512/iumj.1979.28.28032
- Karma Dajani, On superrecurrence, Canad. Math. Bull. 34 (1991), no. 1, 48–57. MR 1108928, DOI 10.4153/CMB-1991-008-7 —, Ph.D dissertation, George Washington University, 1989. T. Hamachi and M. Osikawa, Ergodic groups of automorphisms and Krieger’s Theorem, Sem. Math. Sci 3 (1981).
- Wolfgang Krieger, On the Araki-Woods asymptotic ratio set and non-singular transformations of a measure space, Contributions to Ergodic Theory and Probability (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970) Lecture Notes in Math., Vol. 160, Springer, Berlin, 1970, pp. 158–177. MR 0414823
- D. Maharam, Incompressible transformations, Fund. Math. 56 (1964), 35–50. MR 169988, DOI 10.4064/fm-56-1-35-50
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- K. R. Parthasarathy and K. Schmidt, On the cohomology of a hyperfinite action, Monatsh. Math. 84 (1977), no. 1, 37–48. MR 457680, DOI 10.1007/BF01637024
- Klaus Schmidt, Cocycles on ergodic transformation groups, Macmillan Lectures in Mathematics, Vol. 1, Macmillan Co. of India, Ltd., Delhi, 1977. MR 0578731
- Klaus Schmidt, On recurrence, Z. Wahrsch. Verw. Gebiete 68 (1984), no. 1, 75–95. MR 767446, DOI 10.1007/BF00535175 D. Ullman, Ph.D dissertation, Berkeley.
- Benjamin Weiss, Orbit equivalence of nonsingular actions, Ergodic theory (Sem., Les Plans-sur-Bex, 1980) Monograph. Enseign. Math., vol. 29, Univ. Genève, Geneva, 1981, pp. 77–107. MR 609897
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 323 (1991), 111-132
- MSC: Primary 28D99; Secondary 34C35, 47A35, 60J15
- DOI: https://doi.org/10.1090/S0002-9947-1991-1018574-8
- MathSciNet review: 1018574