Weak type $(1,1)$ estimates for heat kernel maximal functions on Lie groups
HTML articles powered by AMS MathViewer
- by Michael Cowling, Garth Gaudry, Saverio Giulini and Giancarlo Mauceri
- Trans. Amer. Math. Soc. 323 (1991), 637-649
- DOI: https://doi.org/10.1090/S0002-9947-1991-0967310-X
- PDF | Request permission
Abstract:
For a Lie group $G$ with left-invariant Haar measure and associated Lebesgue spaces ${L^p}(G)$, we consider the heat kernels ${\{ {p_t}\} _{t > 0}}$ arising from a right-invariant Laplacian $\Delta$ on $G$: that is, $u(t, \cdot ) = {p_t}{\ast }f$ solves the heat equation $(\partial /\partial t - \Delta )u = 0$ with initial condition $u(0, \cdot ) = f( \cdot )$. We establish weak-type $(1,1)$ estimates for the maximal operator $\mathcal {M}(\mathcal {M}\;f = {\sup _{t > 0}}|{p_t}{\ast }f|)$ and for related Hardy-Littlewood maximal operators in a variety of contexts, namely for groups of polynomial growth and for a number of classes of Iwasawa $AN$ groups. We also study the "local" maximal operator ${\mathcal {M}_0}({\mathcal {M}_0}f = {\sup _{0 < t < 1}}|{p_t}{\ast }f|)$ and related Hardy-Littlewood operators for all Lie groups.References
- Jean-Philippe Anker and Noël Lohoué, Multiplicateurs sur certains espaces symétriques, Amer. J. Math. 108 (1986), no. 6, 1303–1353 (French). MR 868894, DOI 10.2307/2374528 N. Dunford and J. T. Schwartz, Linear operators, Vol. I, Wiley, New York, 1957.
- Mogens Flensted-Jensen, Spherical functions of a real semisimple Lie group. A method of reduction to the complex case, J. Functional Analysis 30 (1978), no. 1, 106–146. MR 513481, DOI 10.1016/0022-1236(78)90058-7
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- A. Hulanicki, Subalgebra of $L_{1}(G)$ associated with Laplacian on a Lie group, Colloq. Math. 31 (1974), 259–287. MR 372536, DOI 10.4064/cm-31-2-259-287
- J. W. Jenkins, Growth of connected locally compact groups, J. Functional Analysis 12 (1973), 113–127. MR 0349895, DOI 10.1016/0022-1236(73)90092-x
- S. Kusuoka and D. Stroock, Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator, Ann. of Math. (2) 127 (1988), no. 1, 165–189. MR 924675, DOI 10.2307/1971418
- Noël Lohoué and Thomas Rychener, Die Resolvente von $\Delta$ auf symmetrischen Räumen vom nichtkompakten Typ, Comment. Math. Helv. 57 (1982), no. 3, 445–468 (German). MR 689073, DOI 10.1007/BF02565869
- Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory. , Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR 0252961
- N. Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal. 76 (1988), no. 2, 346–410. MR 924464, DOI 10.1016/0022-1236(88)90041-9
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 323 (1991), 637-649
- MSC: Primary 43A80; Secondary 22E30, 42B25, 58G11
- DOI: https://doi.org/10.1090/S0002-9947-1991-0967310-X
- MathSciNet review: 967310