Generating modules efficiently over noncommutative Noetherian rings
HTML articles powered by AMS MathViewer
- by S. C. Coutinho
- Trans. Amer. Math. Soc. 323 (1991), 843-856
- DOI: https://doi.org/10.1090/S0002-9947-1991-0986688-4
- PDF | Request permission
Abstract:
The Forster-Swan Theorem gives an upper bound on the number of generators of a module over a commutative ring in terms of local data. Stafford showed that this theorem could be generalized to arbitrary right and left noetherian rings. In this paper a similar result is proved for right noetherian rings with finite Krull dimension. A new dimension function—the basic dimension—is the main tool used in the proof of this result.References
- S. C. Coutinho, Generating modules efficiently over non-commutative noetherian rings, PhD thesis, Leeds University, 1986.
- S. C. Coutinho, Basic element theory of noncommutative Noetherian rings, J. Algebra 144 (1991), no. 1, 24–42. MR 1136893, DOI 10.1016/0021-8693(91)90125-R
- C. Dean and J. T. Stafford, A nonembeddable Noetherian ring, J. Algebra 115 (1988), no. 1, 175–181. MR 937608, DOI 10.1016/0021-8693(88)90289-X
- David Eisenbud and E. Graham Evans Jr., Generating modules efficiently: theorems from algebraic $K$-theory, J. Algebra 27 (1973), 278–305. MR 327742, DOI 10.1016/0021-8693(73)90106-3
- Robert Gordon and J. C. Robson, Krull dimension, Memoirs of the American Mathematical Society, No. 133, American Mathematical Society, Providence, R.I., 1973. MR 0352177
- Nathan Jacobson, Basic algebra. II, W. H. Freeman and Co., San Francisco, Calif., 1980. MR 571884
- Arun Vinayak Jategaonkar, Jacobson’s conjecture and modules over fully bounded Noetherian rings, J. Algebra 30 (1974), 103–121. MR 352170, DOI 10.1016/0021-8693(74)90195-1
- Ernst Kunz, Introduction to commutative algebra and algebraic geometry, Birkhäuser Boston, Inc., Boston, MA, 1985. Translated from the German by Michael Ackerman; With a preface by David Mumford. MR 789602
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- Louis H. Rowen, Ring theory. Vol. I, Pure and Applied Mathematics, vol. 127, Academic Press, Inc., Boston, MA, 1988. MR 940245
- J. T. Stafford, Generating modules efficiently: algebraic $K$-theory for noncommutative Noetherian rings, J. Algebra 69 (1981), no. 2, 312–346. MR 617082, DOI 10.1016/0021-8693(81)90208-8
- J. T. Stafford, Generating modules efficiently over noncommutative rings, Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 34th Year (Paris, 1981) Lecture Notes in Math., vol. 924, Springer, Berlin-New York, 1982, pp. 72–88. MR 662253
- J. T. Stafford, Nonholonomic modules over Weyl algebras and enveloping algebras, Invent. Math. 79 (1985), no. 3, 619–638. MR 782240, DOI 10.1007/BF01388528
- R. B. Warfield Jr., The number of generators of a module over a fully bounded ring, J. Algebra 66 (1980), no. 2, 425–447. MR 593603, DOI 10.1016/0021-8693(80)90096-4
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 323 (1991), 843-856
- MSC: Primary 16P40; Secondary 16E20, 16P60, 19A13, 19A15
- DOI: https://doi.org/10.1090/S0002-9947-1991-0986688-4
- MathSciNet review: 986688