Locally flat $2$-knots in $S^ 2\times S^ 2$ with the same fundamental group
HTML articles powered by AMS MathViewer
- by Yoshihisa Sato
- Trans. Amer. Math. Soc. 323 (1991), 911-920
- DOI: https://doi.org/10.1090/S0002-9947-1991-0986701-4
- PDF | Request permission
Abstract:
We consider a locally flat $2$-sphere in ${S^2} \times {S^2}$ representing a primitive homology class $\xi$, which is referred to as a $2$-knot in ${S^2} \times {S^2}$ representing $\xi$. Then for any given primitive class $\xi$, there exists a $2$-knot in ${S^2} \times {S^2}$ representing $\xi$ with simply-connected complement. In this paper, we consider the classification of $2$-knots in ${S^2} \times {S^2}$ whose complements have a fixed fundamental group. We show that if the complement of a $2$-knot $S$ in ${S^2} \times {S^2}$ is simply connected, then the ambient isotopy type of $S$ is determined. In the case of nontrivial ${\pi _1}$, however, we show that the ambient isotopy type of a $2$-knot in ${S^2} \times {S^2}$ with nontrivial ${\pi _1}$ is not always determined by ${\pi _1}$.References
- Francis Bonahon, Difféotopies des espaces lenticulaires, Topology 22 (1983), no. 3, 305–314 (French). MR 710104, DOI 10.1016/0040-9383(83)90016-2
- Steven Boyer, Simply-connected $4$-manifolds with a given boundary, Trans. Amer. Math. Soc. 298 (1986), no. 1, 331–357. MR 857447, DOI 10.1090/S0002-9947-1986-0857447-6
- S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279–315. MR 710056, DOI 10.4310/jdg/1214437665
- S. K. Donaldson, The orientation of Yang-Mills moduli spaces and $4$-manifold topology, J. Differential Geom. 26 (1987), no. 3, 397–428. MR 910015, DOI 10.4310/jdg/1214441485
- Ronald Fintushel and Ronald J. Stern, Pseudofree orbifolds, Ann. of Math. (2) 122 (1985), no. 2, 335–364. MR 808222, DOI 10.2307/1971306
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066
- Patrick M. Gilmer and Charles Livingston, On embedding $3$-manifolds in $4$-space, Topology 22 (1983), no. 3, 241–252. MR 710099, DOI 10.1016/0040-9383(83)90011-3
- Herman Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308–333. MR 146807, DOI 10.1090/S0002-9947-1962-0146807-0 C. D. Hodgson, Involutions and isotopies of lens spaces, Master’s thesis, Univ. of Melbourne, 1981.
- Ken’ichi Kuga, Representing homology classes of $S^{2}\times S^{2}$, Topology 23 (1984), no. 2, 133–137. MR 744845, DOI 10.1016/0040-9383(84)90034-X
- Youn W. Lee, Contractibly embedded $2$-spheres in $S^{2}\times S^{2}$, Proc. Amer. Math. Soc. 85 (1982), no. 2, 280–282. MR 652458, DOI 10.1090/S0002-9939-1982-0652458-X
- Kenneth Millett and Dale Rolfsen, A theorem of Borsuk-Ulam type for Seifert-fibred $3$-manifolds, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 523–532. MR 857727, DOI 10.1017/S0305004100066251 Y. Sato, Smooth $2$-knots in ${S^2} \times {S^2}$ with simply-connected complement are topologically unique, Proc. Amer. Math. Soc. (to appear).
- Frank Quinn, Isotopy of $4$-manifolds, J. Differential Geom. 24 (1986), no. 3, 343–372. MR 868975
- E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471–495. MR 195085, DOI 10.1090/S0002-9947-1965-0195085-8
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 323 (1991), 911-920
- MSC: Primary 57Q45
- DOI: https://doi.org/10.1090/S0002-9947-1991-0986701-4
- MathSciNet review: 986701