A cubic counterpart of Jacobi’s identity and the AGM
HTML articles powered by AMS MathViewer
- by J. M. Borwein and P. B. Borwein
- Trans. Amer. Math. Soc. 323 (1991), 691-701
- DOI: https://doi.org/10.1090/S0002-9947-1991-1010408-0
- PDF | Request permission
Abstract:
We produce exact cubic analogues of Jacobi’s celebrated theta function identity and of the arithmetic-geometric mean iteration of Gauss and Legendre. The iteration in question is \[ {a_{n + 1}}: = \frac {{{a_n} + 2{b_n}}} {3}\quad {\text {and}}\quad {b_{n + 1}}: = \sqrt [3]{{{b_n}\left ( {\frac {{a_n^2 + {a_n}{b_n} + b_n^2}} {3}} \right ).}}\] The limit of this iteration is identified in terms of the hypergeometric function ${}_2{F_1}(1/3,2/3;1; \cdot )$, which supports a particularly simple cubic transformation.References
- M. Abramowitz and I. Stegun, Handbook of mathematical functions, Dover, New York, 1964.
- Richard Bellman, A brief introduction to theta functions, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York, 1961. MR 0125252, DOI 10.1017/s0025557200044491
- R. A. Rankin, Ramanujan’s unpublished work on congruences, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Lecture Notes in Math., Vol. 601, Springer, Berlin, 1977, pp. 3–15. MR 0447084
- Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR 877728 —, Quadratic mean iterations, (monograph in preparation). —, More Ramanujan-type series for $1/\pi$, Ramanujan Revisited, Academic Press, 1988, pp. 359-374.
- D. V. Chudnovsky and G. V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 375–472. MR 938975
- G. H. Hardy, Ramanujan. Twelve lectures on subjects suggested by his life and work, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1940. MR 0004860 S. Ramanujan, Modular equations and approximations to $\pi$, Quart. J. Math. 45 (1914), 350-372. J. Tannery and J. Molk, Fonctions elliptiques, Vols. 1 and 2, 1893; republished by Chelsea, New York, 1972.
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 323 (1991), 691-701
- MSC: Primary 33C75; Secondary 11F11, 11Y60, 33C05
- DOI: https://doi.org/10.1090/S0002-9947-1991-1010408-0
- MathSciNet review: 1010408