A cubic counterpart of Jacobi's identity and the AGM

Authors:
J. M. Borwein and P. B. Borwein

Journal:
Trans. Amer. Math. Soc. **323** (1991), 691-701

MSC:
Primary 33C75; Secondary 11F11, 11Y60, 33C05

DOI:
https://doi.org/10.1090/S0002-9947-1991-1010408-0

MathSciNet review:
1010408

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We produce exact cubic analogues of Jacobi's celebrated theta function identity and of the arithmetic-geometric mean iteration of Gauss and Legendre. The iteration in question is

The limit of this iteration is identified in terms of the hypergeometric function , which supports a particularly simple cubic transformation.

**[1]**M. Abramowitz and I. Stegun,*Handbook of mathematical functions*, Dover, New York, 1964.**[2]**Richard Bellman,*A brief introduction to theta functions*, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York, 1961. MR**0125252****[3]**R. A. Rankin,*Ramanujan’s unpublished work on congruences*, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Springer, Berlin, 1977, pp. 3–15. Lecture Notes in Math., Vol. 601. MR**0447084****[4]**Jonathan M. Borwein and Peter B. Borwein,*Pi and the AGM*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR**877728****[5]**-,*Quadratic mean iterations*, (monograph in preparation).**[6]**-,*More Ramanujan-type series for*, Ramanujan Revisited, Academic Press, 1988, pp. 359-374.**[7]**D. V. Chudnovsky and G. V. Chudnovsky,*Approximations and complex multiplication according to Ramanujan*, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 375–472. MR**938975****[8]**G. H. Hardy,*Ramanujan. Twelve lectures on subjects suggested by his life and work*, Cambridge University Press, Cambridge, England; Macmillan Company, New York, 1940. MR**0004860****[9]**S. Ramanujan,*Modular equations and approximations to*, Quart. J. Math.**45**(1914), 350-372.**[10]**J. Tannery and J. Molk,*Fonctions elliptiques*, Vols. 1 and 2, 1893; republished by Chelsea, New York, 1972.**[11]**E. T. Whittaker and G. N. Watson,*A course of modern analysis*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR**1424469**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
33C75,
11F11,
11Y60,
33C05

Retrieve articles in all journals with MSC: 33C75, 11F11, 11Y60, 33C05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-1010408-0

Keywords:
Mean iterations,
theta functions,
hypergeometric functions,
generalised elliptic functions,
cubic transformations,
pi,
Ramanujan

Article copyright:
© Copyright 1991
American Mathematical Society