On the spectral character of Toeplitz operators on multiply connected domains
HTML articles powered by AMS MathViewer
- by Kevin F. Clancey
- Trans. Amer. Math. Soc. 323 (1991), 897-910
- DOI: https://doi.org/10.1090/S0002-9947-1991-1012524-6
- PDF | Request permission
Abstract:
An explicit resolvent formula is given for selfadjoint Toeplitz operators acting on the least harmonic majorant Hardy spaces of a multiply connected planar domain. This formula is obtained by using theta functions associated with the double of the domain. Several consequences concerning the spectral resolutions of selfadjoint Toeplitz operators are deduced.References
- M. B. Abrahamse, Toeplitz operators in multiply connected regions, Amer. J. Math. 96 (1974), 261–297. MR 361891, DOI 10.2307/2373633 N. Aronszajn and W. F. Donoghue, Jr., On exponential representations of analytic functions in the upper half-plane with positive imaginary part, J. Analyse Math. 5 (1956-57), 321-388.
- Kevin F. Clancey, Representing measures on multiply connected planar domains, Illinois J. Math. 35 (1991), no. 2, 286–311. MR 1091446
- Kevin F. Clancey, Toeplitz operators on multiply connected domains and theta functions, Contributions to operator theory and its applications (Mesa, AZ, 1987) Oper. Theory Adv. Appl., vol. 35, Birkhäuser, Basel, 1988, pp. 311–355. MR 1017675
- William F. Donoghue Jr., On the perturbation of spectra, Comm. Pure Appl. Math. 18 (1965), 559–579. MR 190761, DOI 10.1002/cpa.3160180402
- John D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin-New York, 1973. MR 0335789
- R. S. Ismagilov, On the spectrum of Toeplitz matrices, Dokl. Akad. Nauk SSSR 149 (1963), 769–772 (Russian). MR 0146670
- David Mumford, Tata lectures on theta. I, Progress in Mathematics, vol. 28, Birkhäuser Boston, Inc., Boston, MA, 1983. With the assistance of C. Musili, M. Nori, E. Previato and M. Stillman. MR 688651, DOI 10.1007/978-1-4899-2843-6
- Joel Pincus and Jing Bo Xia, Symmetric and selfadjoint Toeplitz operators on multiply connected plane domains, J. Funct. Anal. 59 (1984), no. 3, 397–444. MR 769374, DOI 10.1016/0022-1236(84)90058-2
- Marvin Rosenblum, A concrete spectral theory for self-adjoint Toeplitz operators, Amer. J. Math. 87 (1965), 709–718. MR 181901, DOI 10.2307/2373070
- Marvin Rosenblum, Self-adjoint Toeplitz operators and associated orthonormal functions, Proc. Amer. Math. Soc. 13 (1962), 590–595. MR 138001, DOI 10.1090/S0002-9939-1962-0138001-X E. I. Zverovich, Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces, Russian Math. Surveys 26 (1971), 117-192.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 323 (1991), 897-910
- MSC: Primary 47B35; Secondary 30D55
- DOI: https://doi.org/10.1090/S0002-9947-1991-1012524-6
- MathSciNet review: 1012524