On the homology of $\textrm {SU}(n)$ instantons
HTML articles powered by AMS MathViewer
- by Charles P. Boyer, Benjamin M. Mann and Daniel Waggoner
- Trans. Amer. Math. Soc. 323 (1991), 529-561
- DOI: https://doi.org/10.1090/S0002-9947-1991-1034658-2
- PDF | Request permission
Abstract:
In this paper we study the homology of the moduli spaces of instantons associated to principal ${\mathbf {SU}}(n)$ bundles over the four-sphere. This is accomplished by exploiting an "iterated loop space" structure implicit in the disjoint union of all moduli spaces associated to a fixed ${\mathbf {SU}}(n)$ with arbitrary instanton number and relating these spaces to the known homology structure of the four-fold loop space on $B{\mathbf {SU}}(n)$.References
- Tatsuji Kudo and Shôrô Araki, Topology of $H_n$-spaces and $H$-squaring operations, Mem. Fac. Sci. Kyūsyū Univ. A 10 (1956), 85–120. MR 87948, DOI 10.2206/kyushumfs.10.85
- M. F. Atiyah, Geometry on Yang-Mills fields, Scuola Normale Superiore, Pisa, 1979. MR 554924
- M. F. Atiyah, N. J. Hitchin, V. G. Drinfel′d, and Yu. I. Manin, Construction of instantons, Phys. Lett. A 65 (1978), no. 3, 185–187. MR 598562, DOI 10.1016/0375-9601(78)90141-X
- M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461. MR 506229, DOI 10.1098/rspa.1978.0143
- M. F. Atiyah and J. D. S. Jones, Topological aspects of Yang-Mills theory, Comm. Math. Phys. 61 (1978), no. 2, 97–118. MR 503187, DOI 10.1007/BF01609489
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609, DOI 10.1007/BFb0068547
- Charles P. Boyer and Benjamin M. Mann, Homology operations on instantons, J. Differential Geom. 28 (1988), no. 3, 423–465. MR 965223
- Charles P. Boyer and Benjamin M. Mann, Instantons and homotopy, Algebraic topology (Arcata, CA, 1986) Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 87–102. MR 1000369, DOI 10.1007/BFb0085220
- William Browder, Homology operations and loop spaces, Illinois J. Math. 4 (1960), 347–357. MR 120646
- Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR 0436146, DOI 10.1007/BFb0080464
- S. K. Donaldson, Instantons and geometric invariant theory, Comm. Math. Phys. 93 (1984), no. 4, 453–460. MR 763753, DOI 10.1007/BF01212289
- Eldon Dyer and R. K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35–88. MR 141112, DOI 10.2307/2372804
- Daniel S. Freed and Karen K. Uhlenbeck, Instantons and four-manifolds, Mathematical Sciences Research Institute Publications, vol. 1, Springer-Verlag, New York, 1984. MR 757358, DOI 10.1007/978-1-4684-0258-2
- David Groisser and Thomas H. Parker, The geometry of the Yang-Mills moduli space for definite manifolds, J. Differential Geom. 29 (1989), no. 3, 499–544. MR 992329
- N. J. Hitchin, A. Karlhede, U. Lindström, and M. Roček, Hyper-Kähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), no. 4, 535–589. MR 877637, DOI 10.1007/BF01214418
- Jacques Hurtubise, Instantons and jumping lines, Comm. Math. Phys. 105 (1986), no. 1, 107–122. MR 847130, DOI 10.1007/BF01212344
- H. Blaine Lawson Jr., The theory of gauge fields in four dimensions, CBMS Regional Conference Series in Mathematics, vol. 58, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1985. MR 799712, DOI 10.1090/cbms/058
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609, DOI 10.1007/BFb0068547
- R. James Milgram, Iterated loop spaces, Ann. of Math. (2) 84 (1966), 386–403. MR 206951, DOI 10.2307/1970453
- R. James Milgram, The $\textrm {mod}\ 2$ spherical characteristic classes, Ann. of Math. (2) 92 (1970), 238–261. MR 263100, DOI 10.2307/1970836
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR 0163331, DOI 10.1515/9781400881802
- M. S. Narasimhan and S. Ramanan, Existence of universal connections, Amer. J. Math. 83 (1961), 563–572. MR 133772, DOI 10.2307/2372896
- Graeme Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973), 213–221. MR 331377, DOI 10.1007/BF01390197
- Clifford Henry Taubes, Stability in Yang-Mills theories, Comm. Math. Phys. 91 (1983), no. 2, 235–263. MR 723549, DOI 10.1007/BF01211160
- Clifford Henry Taubes, Path-connected Yang-Mills moduli spaces, J. Differential Geom. 19 (1984), no. 2, 337–392. MR 755230
- Clifford Henry Taubes, The stable topology of self-dual moduli spaces, J. Differential Geom. 29 (1989), no. 1, 163–230. MR 978084 D. Waggoner, Loop spaces and the classical unitary groups, Ph.D. Thesis, University of Kentucky, 1985.
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508, DOI 10.1007/978-1-4612-6318-0
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 323 (1991), 529-561
- MSC: Primary 58D27; Secondary 53C07, 55R40
- DOI: https://doi.org/10.1090/S0002-9947-1991-1034658-2
- MathSciNet review: 1034658